
mathematical methods - week 10

Discrete symmetries

Georgia Tech PHYS-6124
Homework HW #10 due Thursday, October 29, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 10.1 1-dimensional representation of anything 1 point
Exercise 10.2 2-dimensional representation of S3 4 points
Exercise 10.3 D3: symmetries of an equilateral triangle 5 points

Bonus points
Exercise 10.4 (a), (b) and (c) Permutation of three objects 2 points
Exercise 10.5 3-dimensional representations of D3 3 points

Total of 10 points = 100 % score.

edited October 28, 2020
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Week 10 syllabus Tuesday, October 20, 2020

Tyger Tyger burning bright,
In the forests of the night:
What immortal hand or eye,
Dare frame thy fearful symmetry?

—William Blake, The Tyger

This week’s lectures are related to AWH Chapter 17 Group Theory (click here). The
fastest way to watch any week’s lecture videos is by letting YouTube run the course
playlist (click here).

There is way too much material in this week’s notes. Watch the main sequence of
video clips, that and recommended reading should suffice to do the problems. The rest
is optional. You can glance through sect. 10.1 Group presentations, and sect. 10.3 Lit-
erature, but I do not expect you to understand this material.

Group theory and why I love 808,017,· · · ,000 is a great video on group theory
from 3Blue1Brown, writes Andrew Wu. I agree: Well worth of your time, more
motivational than my lectures. What it actually focuses on - the monster group -
is totally useless to us. My focus this week is narrow and technical:

1. theory of finite groups are a natural generalization of discrete Fourier rep-
resentations

2. it is all about class and character. “Character", in particular, I find very
surprising - one complex number suffices to characterize a matrix!

Hang in there! And relax. None of this will be on the test. As a matter of fact, there
will be no test.

• It’s all about class: Groups, permutations, D3
∼= C3v

∼= S3 symmetries of equi-
lateral triangle, rearrangement theorem, subgroups, cosets, classes.

Dresselhaus et al. [3] Chapter 1 Basic Mathematical Background: Intro-
duction (click here). The MIT course 6.734 online version contains much
of the same material.

ChaosBook Chapter 10. Flips, slides and turns

Clip 1 - discrete symmetry, an example: 3-disk pinball

Clip 2 - what is a group?

Clip 2a - discussion : permutations, symmetric group, simple groups,
Italian renaissance, French revolution, Galois

by Socratica:
a delightful introduction to group multiplication (or Cayley) tables.

Clip 3 - active, passive coordinate transformations

Clip 4 - following Mefisto: symmetry defined three (3) times

http://QMwNvzRKX64
http://ChaosBook.org/library/ArWeHa13chap17Group-Theory.pdf
https://www.youtube.com/watch?v=3-IOimSbJV4&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=90&t=0s
https://www.youtube.com/watch?v=3-IOimSbJV4&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=90&t=0s
http://YouTube.com/embed/mH0oCDa74tE
http://ChaosBook.org/library/Dresselhaus07.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
http://YouTube.com/embed/3-IOimSbJV4
http://YouTube.com/embed/AwqIddo0t_Y 
http://YouTube.com/embed/d7kW7uGV0D0
http://YouTube.com/embed/BwHspSCXFNM
https://www.youtube.com/playlist?list=PLi01XoE8jYoi3SgnnGorR_XOW3IcK-TP6
http://YouTube.com/embed/6YpzRNPMiAI 
http://YouTube.com/embed/jHHKK_T9Pg0 
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Clip 5 - subgroups, classes, group orbits, reduced state space

• Hard work builds character: Irreps, unitary reps, Schur’s Lemma.

Chapter 2 Representation Theory and Basic Theorems
Dresselhaus et al. [3], up to and including
Sect. 2.4 The Unitarity of Representations (click here)

Clip 6 - this requires character

Clip 7 - hard work builds character

Clip 8 - the symmetry group of a propeller

Clip 9 - irreps of C3

Clip 10 - rotation in the plane: irreps of D3

Clip 10a - Discussion : more symmetries, fewer invariant subspaces
Clip 10b - Discussion : abelian vs. nonabelian

• “Wonderful Orthogonality Theorem.”

In this course, we learn about full reducibility of finite and compact continuous
groups in two parallel ways. On one hand, I personally find the multiplicative
projection operators (1.19), coupled with the notion of class algebras (Harter [4]
(click here) appendix C) most intuitive - a block-diagonalized subspace for each
distinct eigenvalue of a given all-commuting matrix. On the other hand, the char-
acter weighted sums (here related to the multiplicative projection operators as
in ChaosBook Example A24.2 Projection operators for discrete Fourier trans-
form) offer a deceptively ‘simple’ and elegant formulation of full-reducibility
theorems, preferred by all standard textbook expositions:

Dresselhaus et al. [3] Sects. 2.5 and 2.6 Schur’s Lemma.
a first go at sect. 2.7

Clip 11 - irreps

Clip 12 - Frobenius character formula

Clip 13 - character orthogonality relations

Clip 14 - the summary: it is all about class and character

Clip 14a - discussion : class and character

Optional reading

For a deep dive into this material, here is your rabbit hole.

For deeper insights, read Roger Penrose [8] (click here).

For a typical (but for this course advanced) application see, for example, Stone
and Goldbart [11], Mathematics for Physics: A Guided Tour for Graduate Stu-
dents, Section 14.3.2 Vibrational spectrum of H2O (click here).

http://YouTube.com/embed/Aqbs1mLnis4 
http://ChaosBook.org/library/Dresselhaus07sect2_4.pdf
http://YouTube.com/embed/qcLEygD6bvM
http://YouTube.com/embed/sYPaHIxpsJk
http://YouTube.com/embed/GQ2dwk5MgDk
http://YouTube.com/embed/bTFgKnpGas0
http://YouTube.com/embed/_nGw03fW2XU
http://YouTube.com/embed/2v87JIvcApE
http://YouTube.com/embed/tgZseakSGOc
http://ChaosBook.org/library/Harter78.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
http://YouTube.com/embed/yKT9DkiLfc0
http://YouTube.com/embed/r3VM1CD4obs
http://YouTube.com/embed/7Jklr-fBQEw
http://YouTube.com/embed/1Fvt8FMZSvM
http://YouTube.com/embed/FRRrRC3a8-Y
http://birdtracks.eu/courses/PHYS-7143-19/index.html
http://ChaosBook.org/library/Penr04-13.pdf
http://ChaosBook.org/library/StGo09.pdf
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Harter’s Sect. 3.2 First stage of non-Abelian symmetry analysis
group multiplication table (3.1.1); class operators; class multiplication table (3.2.1b);
all-commuting or central operators;

Harter’s Sect. 3.3 Second stage of non-Abelian symmetry analysis
projection operators (3.2.15); 1-dimensional irreps (3.3.6); 2-dimensional irrep
(3.3.7); Lagrange irreps dimensionality relation (3.3.17)

An example: a 1-dimensional system with a symmetry

Fundamental domain

Tiling of state space by a finite group

Make the “fundamental tile" your hood

Symmetry-reduced dynamics

Regular representation of permuting tiles

Group theory voodoo

Tell no Lie to plumbers

There is no need to learn all these “Greek” words.

• Bedside crocheting.

Question 10.1. Henriette Roux asks
Q What are cosets good for?
A Apologies for glossing over their meaning in the lecture. I try to minimize group-theory
jargon, but cosets cannot be ignored.

Dresselhaus et al. [3] (click here) Chapter 1 Basic Mathematical Background: Introduction
needs them to show that the dimension of a subgroup is a divisor of the dimension of the group.
For example, C3 of dimension 3 is a subgroup of D3 of dimension 6.

In ChaosBook Chapter 10. Flips, slides and turns cosets are absolutely essential. The
significance of the coset is that if a solution has a symmetry, then the elements in a coset act on
the solution the same way, and generate all equivalent copies of this solution. Example 10.7.
Subgroups, cosets of D3 should help you understand that.

10.1 Group presentations
Group theory? It is all about class & character.

— Predrag Cvitanović, One minute elevator pitch

Group multiplication (or Cayley) tables, such as Table 10.1, define each distinct
discrete group, but they can be hard to digest. A Cayley graph, with links labeled
by generators, and the vertices corresponding to the group elements, has the same
information as the group multiplication table, but is often a more insightful presentation
of the group.

http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://YouTube.com/embed/sI39jMdjxVM
http://YouTube.com/embed/0rrMJjqmh98
http://YouTube.com/embed/IBRJ_3jH41o
http://YouTube.com/embed/t5K5c0Omc0c
http://YouTube.com/embed/IwytdBvKW7M
http://YouTube.com/embed/SnBUkUqsWTU
http://YouTube.com/embed/k7Fakf51jGQ
http://YouTube.com/embed/uOkj1CaHrfA
http://www.theonion.com/articles/historians-admit-to-inventing-ancient-greeks,18209/
http://www.theiff.org/oexhibits/oe1e.html
http://ChaosBook.org/library/Dresselhaus07.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
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D3 e C C2 σ(1) σ(2) σ(3)

e e C C2 σ(1) σ(2) σ(3)

C C C2 e σ(3) σ(1) σ(2)

C2 C2 e C σ(2) σ(3) σ(1)

σ(1) σ(1) σ(2) σ(3) e C C2

σ(2) σ(2) σ(3) σ(1) C2 e C
σ(3) σ(3) σ(1) σ(2) C C2 e

Table 10.1: The D3 group multiplication table.

Figure 10.1: A Cayley graph presentation of
the dihedral group D4. The ‘root vertex’ of the
graph, marked e, is here indicated by the letter
F, the links are multiplications by two genera-
tors: a cyclic rotation by left-multiplication by
element a (directed red link), and the flip by b
(undirected blue link). The vertices are the 8
possible orientations of the transformed letter F.

For example, the Cayley graph figure 10.1 is a clear presentation of the dihedral
group D4 of order 8,

D4 = (e, a, a2, a3, b, ba, ba2, ba3) , generators a4 = e , b2 = e . (10.1)

Quaternion group is also of order 8, but with a distinct multiplication table / Cayley
graph, see figure 10.2. For more of such, see, for example, mathoverflow Cayley graph
discussion.

Example 10.1. Projection operators for cyclic group CN .
Consider a cyclic group CN = {e, g, g2, · · · gN−1}, and let M = D(g) be a [2N×2N ]

representation of the one-step shift g. In the projection operator formulation (1.19),
the N distinct eigenvalues of M , the N th roots of unity λn = λn, λ = exp(i 2π/N),
n = 0, . . . N − 1, split the 2N -dimensional space into N 2-dimensional subspaces by
means of projection operators

Pn =
∏
m6=n

M − λm I
λn − λm

=

N−1∏
m=1

λ−nM − λm I
1− λm , (10.2)

where we have multiplied all denominators and numerators by λ−n. The numerator is
now a matrix polynomial of form (x − λ)(x − λ2) · · · (x − λN−1) , with the zeroth root
(x− λ0) = (x− 1) quotiented out from the defining matrix equation MN − 1 = 0. Using

1− xN

1− x = 1 + x+ · · ·+ xN−1 = (x− λ)(x− λ2) · · · (x− λN−1)

https://en.wikipedia.org/wiki/Quaternion_group
https://mathoverflow.net/questions/244524/when-can-the-cayley-graph-of-the-symmetries-of-an-object-have-those-symmetries
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Figure 10.2: A Cayley graph presentation of
the quaternion group Q8. It is also of order 8,
but distinct from D4.

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.19)),

Pn =
1

N

N−1∑
m=0

ei
2π
N
nmMm .

This form of the projection operator is the simplest example of the key group theory tool,
projection operator expressed as a sum over characters,

Pn =
1

|G|
∑
g∈G

χ̄(g)D(g) .

(B. Gutkin and P. Cvitanović)

10.1.1 Permutations in birdtracks
The text that follows is a very condensed extract of chapter 6 Permutations from Group
Theory - Birdtracks, Lie’s, and Exceptional Groups [2]. I am usually reluctant to use
birdtrack notations in front of graduate students indoctrinated by their professors in the
1890’s tensor notation, but I’m emboldened by the very enjoyable article on The new
language of mathematics by Dan Silver [10]. Your professor’s notation is as convenient
for actual calculations as -let’s say- long division using roman numerals. So leave
them wallowing in their early progressive rock of 1968, King Crimsons of their youth.
You chill to beats younger than Windows 98, to grime, to trap, to hardvapour, to
birdtracks.

In 1937 R. Brauer [1] introduced diagrammatic notation for the Kronecker δij op-
eration, in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically. His equation (39)

(send index 1 to 2, 2 to 4, contract ingoing (3·4), outgoing (1·3)) is the earliest published
diagrammatic notation I know about. While in kindergarten (disclosure: we were too
poor to afford kindergarten) I sat out to revolutionize modern group theory [2]. But I

http://birdtracks.eu/version9.0/GroupTheory.pdf#section.6.1
http://youtube.com/embed/Lrh8plsPhp4
https://www.youtube.com/watch?v=RqQGUJK7Na4
https://www.youtube.com/watch?v=i_kF4zLNKio
https://antifurdigital.bandcamp.com/album/hardvapour-2
https://www.youtube.com/watch?v=XMGbY1csVnI
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suffered a terrible setback; in early 1970’s Roger Penrose pre-invented my “birdtracks,”
or diagrammatic notation, for symmetrization operators [7], Levi-Civita tensors [9],
and “strand networks” [6]. Here is a little flavor of how one birdtracks:

We can represent the operation of permuting indices (d “billiard ball labels,” tensors
with d indices) by a matrix with indices bunched together:

σβα = σ
a1a2...aq
b1...bp

,dp...d1
cq...c2c1 . (10.3)

To draw this, Brauer style, it is convenient to turn his drawing on a side. For 2-index
tensors, there are two permutations:

identity: 1ab,
cd = δdaδ

c
b =

flip: σ(12)ab,
cd = δcaδ

d
b = . (10.4)

For 3-index tensors, there are six permutations:

1a1a2a3 ,
b3b2b1 = δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 = δb2a1

δb1a2
δb3a3

=

σ(23) = , σ(13) =

σ(123) = , σ(132) = . (10.5)

Here group element labels refer to the standard permutation cycles notation. There is
really no need to indicate the “time direction" by arrows, so we omit them from now
on.

The symmetric sum of all permutations,

Sa1a2...ap ,
bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap + δb1a2

δb2a1
. . . δbpap + . . .

}
S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (10.6)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn across
p lines [7] will always denote symmetrization of the lines crossed. A factor of 1/p! has
been introduced in order for S to satisfy the projection operator normalization

S2 = S

... = ... . (10.7)

You have already seen such “fully-symmetric representation,” in the discussion of
discrete Fourier transforms, ChaosBook Example A24.3 ‘Configuration-momentum’

http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
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Fourier space duality, but you are not likely to recognize it. There the average was not
over all permutations, but the zero-th Fourier mode φ̃0 was the average over only cyclic
permutations. Every finite discrete group has such fully-symmetric representation, and
in statistical mechanics and quantum mechanics this is often the most important state
(the ‘ground’ state).

A subset of indices a1, a2, . . . aq , q < p can be symmetrized by symmetrization
matrix S12...q

(S12...q)a1a2...aq...ap ,
bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq + δb1a2

δb2a1
. . . δbqaq + . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =

...
... ...

2
1

q . (10.8)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...
......

...

... =
... ...

... ... . (10.9)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

...

=

...

. (10.10)

Diagrammatically this means that legs can be crossed and uncrossed at will.
One can construct a projection operator onto the fully antisymmetric space in a

similar manner [2]. Other representations are trickier - that’s precisely what the theory
of finite groups is about.

10.2 It’s all about class
You might want to have a look at Harter [4] Double group theory on the half-shell
(click here). Read appendices B and C on spectral decomposition and class algebras.
Article works out some interesting examples.

See also remark 1.2 Projection operators and perhaps watch Harter’s online lecture
from Harter’s online course.

There is more detail than what we have time to cover here, but I find Harter’s
Sect. 3.3 Second stage of non-Abelian symmetry analysis particularly illuminating. It
shows how physically different (but mathematically isomorphic) higher-dimensional
irreps are constructed corresponding to different subgroup embeddings. One chooses
the irrep that corresponds to a particular sequence of physical symmetry breakings.

http://ChaosBook.org/library/Harter78.pdf
https://www.youtube.com/watch?v=jLO7-Pks0QM
http://www.uark.edu/ua/modphys/markup/GTQM_TitlePage_2015.html
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf


10.3. LITERATURE 103

10.3 Literature
It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read sect. A.6 Gruppenpest of ref. [5]). The exposi-
tion (or the corresponding chapter in Tinkham [12]) that we follow here largely comes
from Wigner’s classic Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra [13], which is a harder going, but the more group theory you learn the
more you’ll appreciate it. Eugene Wigner got the 1963 Nobel Prize in Physics, so by
mid 60’s gruppenpest was accepted in finer social circles.

The structure of finite groups was understood by late 19th century. A full list of
finite groups was another matter. The complete proof of the classification of all finite
groups takes about 3 000 pages, a collective 40-years undertaking by over 100 mathe-
maticians, read the wiki. Not all finite groups are as simple or easy to figure out as D3.
For example, the order of the Ree group 2F4(2)′ is 212(26 + 1)(24− 1)(23 + 1)(2−
1)/2 = 17 971 200 .

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs.

Question 10.2. Henriette Roux asks
Q What did you do this weekend?
A The same as every other weekend - prepared week’s lecture, with my helpers Avi the Little,
Edvard the Nordman, and Malbec el Argentino, under Master Roger’s watchful eye, see here.
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and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and
G. Vattay (Niels Bohr Inst., Copenhagen, 2020).

[6] R. Penrose, “Angular momentum: An approach to combinatorical space-time”,
in Quantum Theory and Beyond, edited by T. Bastin (Cambridge Univ. Press,
Cambridge, 1971).

https://www.youtube.com/embed/CvuoY_yPZeM
https://www.youtube.com/embed/CvuoY_yPZeM
http://youtube.com/embed/CvuoY_yPZeM
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/List_of_finite_simple_groups
http://www.concinnitasproject.org/portfolio/gallery.php?id=Bombieri_Enrico
https://cosmosmagazine.com/mathematics/moonshine-doughnut-maths-proves-pariahs-are-real
https://flic.kr/p/2hxYHTx
http://dx.doi.org/10.2307/1968843
http://dx.doi.org/10.2307/1968843
https://doi.org/10.2307/1968843
https://press.princeton.edu/titles/8839.html
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1119/1.11134
http://dx.doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist


104 MATHEMATICAL METHODS - WEEK 10. DISCRETE SYMMETRIES

[7] R. Penrose, “Applications of negative dimensional tensors”, in Combinatorial
mathematics and its applications, edited by D. J.A. Welsh (Academic, New
York, 1971), pp. 221–244.

[8] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe
(A. A. Knopf, New York, 2005).

[9] R. Penrose and M. A. H. MacCallum, “Twistor theory: An approach to the quan-
tisation of fields and space-time”, Phys. Rep. 6, 241–315 (1973).

[10] D. S. Silver, “The new language of mathematics”, Amer. Sci. 105, 364 (2017).

[11] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge Univ. Press, Cambridge UK, 2009).

[12] M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).

[13] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra (Academic, New York, 1931).

http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://books.google.com/books?vid=ISBN9781446418208
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1511/2017.105.6.364
https://doi.org/10.1511/2017.105.6.364
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1016/c2013-0-01646-5
http://books.google.com/books?vid=ISBN9780323152785
http://books.google.com/books?vid=ISBN9780323152785


EXERCISES 105

Exercises
10.1. 1-dimensional representation of anything. Let D(g) be a representation of a group

G. Show that d(g) = detD(g) is one-dimensional representation of G as well.
(B. Gutkin)

10.2. 2–dimensional representation of S3.

(i) Show that the group S3 of permutations of 3 objects can be generated by two per-
mutations, a transposition and a cyclic permutation:

a =

(
1 2 3
1 3 2

)
, d =

(
1 2 3
3 1 2

)
.

(ii) Show that matrices:

D(e) =

(
1 0
0 1

)
, D(a) =

(
0 1
1 0

)
, D(d) =

(
z 0
0 z2

)
,

with z = ei2π/3, provide proper (faithful) representation for these elements and
find representation for the remaining elements of the group.

(iii) Is this representation irreducible?
One of those tricky questions so simple that one does not necessarily get them. If it
were reducible, all group element matrices could be simultaneously diagonalized.
A motivational (counter)example: as multiplication tables for D3 and S3 are the
same, consider D3. Is the above representation of its C3 subgroup irreducible?

(B. Gutkin)

10.3. D3: symmetries of an equilateral triangle. Consider group D3
∼= C3v

∼= S3, the sym-
metry group of an equilateral triangle:

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 11.2 and
exercise 11.3)

10.4. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the equivalence classes of S3?
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(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

10.5. 3-dimensional representations of D3. The group D3 is the symmetry group of the
equilateral triangle. It has 6 elements

D3 = {E,C,C2, σ(1), σ(2), σ(3)} ,

where C is rotation by 2π/3 and σ(i) is reflection along one of the 3 symmetry axes.

(i) Prove that this group is isomorphic to S3

(ii) Show that matrices

D(E) =

 1 0 0
0 1 0
0 0 1

 , D(C) =

 z 0 0
0 1 0
0 0 z2

 , D(σ(1)) =

 0 0 1
0 −1 0
1 0 0

 ,

(10.11)
generate a 3-dimensional representation D(g) of D3. Hint: Calculate products for

representations of group elements and compare with the group table (see lecture).

(iii) Show that this is a reducible representation which can be split into one dimensional
A and two-dimensional representation Γ. In other words find a matrix R such that

RD(g)R−1 =

(
A(g) 0

0 Γ(g)

)
for all elements g of D3. (Might help: D3 has only one (non-equivalent) 2-dim
irreducible representation).

(B. Gutkin)
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