
mathematical methods - week 11

Continuous symmetries

Georgia Tech PHYS-6124
Homework HW #11 due Thursday, November 5, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 Decompose a representation of S3

(a) 2; (b) 2; (c) 3; and (d) 3 points
(e) 2 and (f) 3 points bonus points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 30, 2020
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http://ChaosBook.org/~predrag/courses/PHYS-6124-20/exerWeek11.tex
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Week 11 syllabus Tuesday, October 27, 2020

I have given up Twitter in exchange for Tacitus & Thucydides,
for Newton & Euclid; & I find myself much the happier.

— Thomas Jefferson to John Adams, 21 January 1812

Clip 1 - They still do not get it!

This week’s lectures are related to AWH Chapter 17 Group Theory, Sect. 17.7 Con-
tinuous groups (click here). The fastest way to watch any week’s lecture videos is by
letting YouTube run the course playlist (click here).

• Lie groups, sect. 11.2

– Definition of a Lie group

– Cyclic group CN → continuous SO(2) plane rotations

– Infinitesimal transformations, SO(2) generator of rotations

– SO(2) (group element) = exp(generator)

Clip 2 - What is a symmetry?

Clip 3 - Group element; transformation generator

Clip 4 - What is a symmetry group?

Clip 5 - What is a group orbit?

Clip 6 - What is dynamics?

Clip 7 - Group SO(2)

• The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of SO(2), but from then on this way of thinking about continuous
symmetries gets to be increasingly awkward. A fresh restart is afforded by matrix
groups, and in particular the mother unitary group U(n) = U(1)⊗SU(n), which
contains all other compact groups, finite or continuous, as subgroups.

Clip 10 - Unitary groups are mothers of all finite / compact symmetries. (1 h 4
min)

Discussion 1 - How did we get the Lie algebra? Why is (almost) every
symmetry we care about a subgroup of an unitary group? (9 min)

Discussion 2 - How did we get the SO(2) generator? (2 min)

Optional viewing and reading

Clip 8 - Infinitesimal symmetries: Lie derivative

https://founders.archives.gov/documents/Jefferson/03-04-02-0334
http://YouTube.com/embed/3NeR6RqNA6g 
http://ChaosBook.org/library/ArWeHa13chap17Group-Theory.pdf
https://www.youtube.com/watch?v=3NeR6RqNA6g&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=109
http://YouTube.com/embed/mwUvbUd0tik 
http://YouTube.com/embed/PLROav1OlbI 
http://YouTube.com/embed/ofeCGK5kVm0
http://YouTube.com/embed/XOmt4GgsrJo 
http://YouTube.com/embed/47OuHQAmVI0 
http://YouTube.com/embed/33Y9vQAnb1c
http://YouTube.com/embed/8-lx5OEAAMA
http://YouTube.com/embed/eDtLf4hNIb8
http://YouTube.com/embed/YIP3k_UDgWg
http://YouTube.com/embed/Sh7mu253ExY 
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Clip 9 - Symmetries of solutions. (18 min)

Clip 11 Special orthogonal group SO(n). (9 min)

Clip 12 Symplectic group Sp(n). (9 min)

Discussion 3 - Orthogonal and unitary transformations

Rant 1 - Is beauty symmetry? The first piece of art found in China is a perfect
disk carved out of jade. All of Bach is symmetries. (9 min)

Rant 2 - students find letter A beautifully symmetric, but Predrag finds zero ‘O’
the most beautiful grade. (1 min)

Rant 3 - SO(3) SU(2) preview and a long rant - listen to it at your own risk.
Roger Penrose thoughts on quantum spacetime and quantum brain. Are laws of
physics time invariant? Waiting for dark energy to go away. Arrow of time. (17
min)

Rant 4 - SO(3) SU(2) preview and a long rant - listen to it at your own risk. Get
this: math uses 2d complex vectors (spinors) to build our real 3d space. And all
we see - starlight, graphene, greenhouse effect, helioseismography, gravitational
wave detectors - it is all irreps! (12 min)

Rant 5 - Help me, I’m bullied by a mathematician. (3 min)

Rant 6 - you can always count on Prof. Z. (1/2 min)

Week 10 stragglers

Discussion 1 - There might be many examples of it, but a ‘group’ itself is an
abstract notion. (3 min)

Discussion 2 - Fourier modes are so simple, that no one calls them irreps. But
add more symmetries, and there have to be fewer irreps. (11 min)

Discussion 3 - what are these "characters"? And why is there a Journal of Linear
Algebra, today? Inconclusive blah blah. (12 min)

Discussion 4 - Homework. (3 min)

Question 11.1. Henriette Roux, pondering exercise 11.1, writes
Q I want to make sure I understand the concept of irreducible representations. In the last
homework, we saw that

1. if a representation (which can be thought of as a sort of basis) is reducible, all group
element matrices can be simultaneously diagonalized. I want to be able to see how this
definition of reducibility matches with the notion of block diagonalizability of an overall
representation D(g).

2. AWH p. 822-823 has a discussion of this, but I’m wondering if there’s an intuitive way to
connect these two definitions or if it’s just linear algebra.

http://YouTube.com/embed/e7OQihw-KYk
http://YouTube.com/embed/1Cp0KW4vc28
http://YouTube.com/embed/Sdf2ROB53PI
http://YouTube.com/embed/SKT5gBoeQ1k 
http://YouTube.com/embed/QeK_DUBSLLI
http://YouTube.com/embed/Jq17VmctxRE
http://YouTube.com/embed/Pdtz4nvaKVQ
http://YouTube.com/embed/fryt8SgDsnk
http://YouTube.com/embed/-LDdWVIJPno
http://YouTube.com/embed/2V7jp2975y0
http://YouTube.com/embed/Ymhl6S7zeJk
http://YouTube.com/embed/ILT3h_NYWxk
http://YouTube.com/embed/Tr94hW3hujY
http://YouTube.com/embed/2GQ3-Nq6ULc
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3. We familiarized ourselves with the concept of (conjugacy) classes in the last homework.
Here, we now add in the concept of character, which, according to AWH, is just the trace
of any matrix in a given class (and every matrix of the same class will have the same trace
b/c of the properties of classes/traces).

4. So to find the characters for a given representation (part c), we just need to find the classes
and then take the trace of a matrix representation in each class?

5. My next and related question then concerns what character means conceptually. Does it
relate classes to other classes within a given representation, or different representations
(whether reducible or not), or both? AWH says that “the set of characters for all elements
and irreducible representations of a finite group defines an orthogonal finite-dimensional
vector space."

6. How does a vector space come about from a set of traces, each of which I normally think
of as just a number, like the determinant? And finally,

7. how can we use our knowledge of classes/character to find irreducible representations,
since that seems to be an important goal in examining a group.

8. exercise 11.1 (c) says to find the characters for this representation, which seems to imply
that character depends on representation. But I would’ve thought that character, which is
a trace of a matrix, is invariant under any similarity transform, which is how you get from
a reducible representation to an irreducible representation.

9. Also, this is more of a guess than anything, but do the multiplicities of irreducible rep-
resentations correspond to the multiplicity of characters (i.e. the number of elements in
each class)? If so, why? (Or if not, why not?)

10. Same thing for classes, correct?. Classes shouldn’t depend on representation b/c they
can be thought of as corresponding to a physical operation (e.g. transposition or cyclic
permutation), something which is independent of basis.

.
A Great framing for a discussion, thanks! I’ll probably reedit this post several times, every-
body’s input is very welcome. Items numbered as in above:

(2) My favorite step-by-step, pedagogical exposition are the chapters 2 Representation The-
ory and Basic Theorems and 3 Character of a Representation of Dresselhaus et al. [2].
There is too much material for our course, but if you want to understand it once for all
times, it’s worth your time.

(3) Correct.

(4) Correct. Note, however, that while every matrix representation has a trace, and thus a
character, you want to decompose this character into the sum of irrep characters, as it is
obvious after the block diagonalization has been attained.

(5) The unitary diagonalization matrix, whose entries are characters, takes character-weighted
sums of classes in order to project them onto irreps, just like what the Fourier representa-
tion does. The result, as we know from projection operators of weeks 1 & 2, are mutually
orthogonal sub-spaces.

(6) Whenever you do not understand something about finite groups, ask yourself - how does
it work for finite lattice Fourier representation?
There the vector space comes via a unitary transformation from the configuration coor-
dinates (where each group element is represented by a full matrix) to the diagonalized,
irreducible subspaces coordinates (Fourier modes).
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The unitary F matrix is full of ωij , ie, characters of the cyclic group Cn. That’s where
the characters come from.

Now mess up C3 by adding a reflection. Dihedral group D3, the group of rotations and re-
flections, has more symmetry constrains, it cannot have 6 irreps, as reflection invariance
mixes together the two senses of rotation. Now there are 3 classes, ie, kinds of things
the group does: nothing, flip, rotate. The unitary transformation that diagonalizes group
element matrices is now morally a smaller unitary [3×3] matrix from ‘classes’ in config-
uration space to ‘irreps’ in the diagonalized representation, where some sub-spaces must
have dimension higher than one.

The surprise, for me, is that the entries in the unitary diagonalization matrix can still be
written as traces of irreps, ie, characters. For me it is a calculation, a beautiful example
of mathematics leading us somewhere where our intuition falls short. If you find a good
intuitive explanation somewhere, please let us all know.

(7) That’s automatic, now. Each irrep has a projection operator associated with it. In weeks
1 & 2 we constructed it as a sub-product of factors in Hamilton-Cayley formula. Now we
know we can write it -just as we did with the Fourier representation- as sum over all class
group actions, each weighted by a the irrep’s character.

(8) Characters are elements of the unitary matrix with one index running over classes, the
other over irreps. So you expect character to differ from representation to representation;
very clear from D3 character table. As always, you already know that from the Fourier
representation example.

(9) Good question. The do not. Dresselhaus et al. [2] has the answer - enter it here once you
understand it.

(10) Correct.

11.1 Lie groups

In week 1 we introduced projection operators (1.20). How are they related to the char-
acter projection operators constructed in the group theory lectures? While the character
orthogonality might be wonderful, it is not very intuitive - it’s a set of solutions to a
set of symmetry-consistent orthogonality relations. You can learn a set of rules that en-
ables you to construct a character table, but it does not tell you what it means. Similar
thing will happen again when we turn to the study of continuous groups: all semisimple
Lie groups will be classified by Killing and Cartan by a more complex set of orthog-
onality and integer-dimensionality (Diophantine) constraints. You obtain all possible
Lie algebras, but have no idea what their geometrical significance is.

In my own Group Theory book [1] I (almost) get all simple Lie algebras using
projection operators constructed from invariant tensors. What that means is easier to
understand for finite groups, and here I like the Harter’s exposition [4] best. Harter
constructs ‘class operators’, shows that they form a basis for the algebra of ‘central’
or ‘all-commuting’ operators, and uses their characteristic equations to construct the
projection operators (1.21) from the ‘structure constants’ of the finite group, i.e., its
class multiplication tables. Expanded, these projection operators are indeed the same
as the ones obtained from character orthogonality.

http://www.uark.edu/ua/modphys/markup/PSDS_Info.html
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11.2 Continuous symmetries : unitary and orthogonal
This week’s lectures are not taken from any particular book, they are about basic
ideas of how one goes from finite groups to the continuous ones that any physicist
should know. We have worked one example out earlier, in week 9 and ChaosBook
Sect. A24.4. It gets you to the continuous Fourier transform as a representation of
U(1) ' SO(2), but from then on this way of thinking about continuous symmetries
gets to be increasingly awkward. So we need a fresh restart; that is afforded by matrix
groups, and in particular the unitary group U(n) = U(1) ⊗ SU(n), which contains all
other compact groups, finite or continuous, as subgroups.

The main idea in a way comes from discrete groups: the cyclic group CN is gen-
erated by the powers of the smallest rotation by ∆θ = 2π/N , and in the N → ∞
limit one only needs to understand the commutation relations among T`, generators of
infinitesimal transformations,

D(∆θ) = 1 + i
∑
`

∆θ`T` +O(∆θ2) . (11.1)

These thoughts are spread over chapters of my book Group Theory - Birdtracks,
Lie’s, and Exceptional Groups [1] that you can steal from my website, but the book
itself is too sophisticated for this course. If you ever want to learn some group theory
in depth, you’ll have to petition the School to offer it.

11.2.1 Lie groups for pedestrians
[...] which is an expression of consecration of angular momen-
tum.

— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the structure of
a smooth differential manifold, and (ii) the composition map G × G → G : (g, h) →
gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make a living.
The compact Lie groups that we will deploy here are a generalization of the theory of
SO(2) ' U(1) rotations, i.e., Fourier analysis. By a ‘smooth differential manifold’
one means objects like the circle of angles that parameterize continuous rotations in a
plane, figure 11.1, or the manifold swept by the three Euler angles that parameterize
SO(3) rotations.

By ‘compact’ one means that these parameters run over finite ranges, as opposed
to parameters in hyperbolic geometries, such as Minkowsky SO(3, 1). The groups we
focus on here are compact by default, as their representations are linear, finite-dimen-
sional matrix subgroups of the unitary matrix group U(d).

Example 1. Circle group. A circle with a direction, figure 11.1, is invariant under rota-
tion by any angle θ ∈ [0, 2π), and the group multiplication corresponds to composition
of two rotations θ1 + θ2 mod 2π. The natural representation of the group action

https://www.youtube.com/watch?v=3NeR6RqNA6g&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=109
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.4
http://birdtracks.eu/
http://youtube.com/embed/ofeCGK5kVm0
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Figure 11.1: Circle group S1 = SO(2), the symmetry group of a circle with directed
rotations, is a compact group, as its natural parametrization is either the angle φ ∈
[0, 2π), or the perimeter x ∈ [0, L).

is by a complex numbers of absolute value 1, i.e., the exponential eiθ. The composi-
tion rule is then the complex multiplication eiθ2eiθ1 = ei(θ1+θ2) . The circle group is
a continuous group, with infinite number of elements, parametrized by the continuous
parameter θ ∈ [0, 2π). It can be thought of as the n→∞ limit of the cyclic group Cn.
Note that the circle divided into n segments is compact, in distinction to the infinite
lattice of integers Z, whose limit is a line (noncompact, of infinite length).

An element of a [d×d] -dimensional matrix representation of a Lie group continu-
ously connected to identity can be written as

g(φ) = eiφ·T , φ · T =
N∑
a=1

φaTa , (11.2)

where φ · T is a Lie algebra element, Ta are matrices called ‘generators’, and φ =
(φ1, φ2, · · · , φN ) are the parameters of the transformation. Repeated indices are summed
throughout, and the dot product refers to a sum over Lie algebra generators. Sometimes
it is convenient to use the Dirac bra-ket notation for the Euclidean product of two real
vectors x, y ∈ Rd, or the product of two complex vectors x, y ∈ Cd, i.e., indicate
complex x-transpose times y by

〈x|y〉 = x†y =
d∑
i

x∗i yi . (11.3)

Finite unitary transformations exp(iφ · T ) are generated by sequences of infinitesimal
steps of form

g(δφ) ' 1 + iδφ · T , δφ ∈ RN , |δφ| � 1 , (11.4)

where Ta, the generators of infinitesimal transformations, are a set of linearly indepen-
dent [d×d] hermitian matrices (see figure 11.2 (b)).

http://youtube.com/embed/PLROav1OlbI
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(a) (b)

Manifold traced out by action of G
for all possible group elements g

xx’

g

Figure 11.2: (a) Lie algebra fields {t1, · · · , tN} span the tangent space of the group
orbitMx at state space point x, see (11.6) (figure from WikiMedia.org). (b) A global
group transformation g : x → x′ can be pieced together from a series of infinitesimal
steps along a continuous trajectory connecting the two points. The group orbit of state
space point x ∈ Rd is the N -dimensional manifold of all actions of the elements of
group G on x.

The reason why one can piece a global transformation from infinitesimal steps is
that the choice of the “origin” in coordinatization of the group manifold sketched in
figure 11.2 (a) is arbitrary. The coordinatization of the tangent space at one point on
the group manifold suffices to have it everywhere, by a coordinate transformation g,
i.e., the new origin y is related to the old origin x by conjugation y = g−1xg, so all
tangent spaces belong the same class, they are geometrically equivalent.

Unitary and orthogonal groups are defined as groups that preserve ‘length’ norms,
〈gx|gx〉 = 〈x|x〉, and infinitesimally their generators (11.4) induce no change in the
norm, 〈Tax|x〉+ 〈x|Tax〉 = 0 , hence the Lie algebra generators Ta are hermitian for,

T †a = Ta . (11.5)

The flow field at the state space point x induced by the action of the group is given by
the set of N tangent fields

ta(x)i = (Ta)ijxj , (11.6)

which span the d-dimensional group tangent space at state space point x, parametrized
by δφ.

For continuous groups the Lie algebra, i.e., the algebra spanned by the set ofN gen-
erators Ta of infinitesimal transformations, takes the role that the |G| group elements
play in the theory of discrete groups (see figure 11.2).
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Exercises

11.1. Decompose a representation of S3. Consider a reducible representation D(g), i.e.,
a representation of group element g that after a suitable similarity transformation takes
form

D(g) =


D(a)(g) 0 0 0

0 D(b)(g) 0 0

0 0 D(c)(g) 0

0 0 0
. . .

 ,

with character for class C given by

χ(C) = ca χ
(a)(C) + cb χ

(b)(C) + cc χ
(c)(C) + · · · ,

where ca, the multiplicity of the ath irreducible representation (colloquially called “ir-
rep”), is determined by the character orthonormality relations,

ca = χ(a)∗ χ =
1

h

class∑
k

Nkχ
(a)(C−1

k ) χ(Ck) . (11.7)

Knowing characters is all that is needed to figure out what any reducible representation
decomposes into!

As an example, let’s work out the reduction of the matrix representation of S3 permuta-
tions. The identity element acting on the three objects (a, b, c)>, arranged as components
of a 3-vector, is a [3×3] identity matrix,

D(E) =

1 0 0
0 1 0
0 0 1


Transposing the first and second object yields (b, a, c)>, represented by the matrix

D(A) =

0 1 0
1 0 0
0 0 1


since 0 1 0

1 0 0
0 0 1

ab
c

 =

ba
c


a) Find all six matrices for this representation.

b) Split this representation into its conjugacy classes.

c) Evaluate the characters χ(Cj) for this representation.

d) Determine multiplicities ca of irreps contained in this representation.

e) Construct explicitly all irreps.

f) Explain whether any irreps are missing in this decomposition, and why.
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11.2. Invariance under fractional rotations. Argue that if the discrete cyclic subgroup

CN = {e, C1/N , C2/N , · · · , (C1/N )N−1} , (C1/N )N = e

of SO(2) rotations about an axis (let’s say the ‘z-axis’) is a symmetry group of the ‘equa-
tions of motion’ ẋ = v(x),

C1/Nv(x) = v(C1/Nx) = v(x) ,

the only non-zero components of Fourier-transformed equations of motion are ajN for
j = 1, 2, · · · . Argue that the Fourier representation is then the ‘quotient map’ of the
dynamics, M/CN . (Hint: this sounds much fancier than what is - think first of how it
applies to the 2- and 3-disk pinballs.)

11.3. Characters of D3. (continued from exercise 10.3) D3
∼= C3v , the group of symmetries

of an equilateral triangle: has three irreducible representations, two one-dimensional and
the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a permutation group or one of its sub-
groups, and elements of the permutation group can be expressed as cycles. Express
the elements of the group D3 as cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2→ 3, and 3→ 1.

(b) Use your representation from exercise 10.3 to compute the D3 character table.

(c) Use a more elegant method from the group-theory literature to verify your D3 char-
acter table.

(d) Two D3 irreducible representations are one dimensional and the third one of multi-
plicity 2 is formed by [2×2] matrices. Find the matrices for all six group elements
in this representation.

(Hint: get yourself a good textbook, like Dresselhaus et al. [2], Tinkham [5] or Hamer-
mesh [3], and read up on classes and characters.)
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