
mathematical methods - week 7

Method of steepest descent

Georgia Tech PHYS-6124
Homework HW #7 due Thursday, October 8, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 7.1 In high dimensions any two vectors are (nearly) orthogonal 16 points

Bonus points
Exercise 7.2 Airy function for large arguments 10 points

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 10, 2020
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Week 7 syllabus September 29, 2020

Arfken, Weber & Harris [1] Chapter 12 Further Topics in Analysis; (click here)
Chapter 13 Gamma function (click here). saddle point method; Gamma, Airy function
estimates; beta function is also often encountered.

Asymptotic evaluation of integrals: perturbation expansions; Laplace, saddle,
steepest descent leading term.

AWH 12.6 Asymptotic series

AWH 12.7 Method of steepest descents

Grigoriev lecture notes

Steepest descent I: Gamma function, Sterling formula.

Steepest descent II, for physicists: Zero-dimensional field theory - perturbation
expansion is an asymptotic series.

– Sect. 7.1 Saddle-point expansions are asymptotic

Steepest descent III, for data scientists: How tall is my graduate student?

– Exercise 7.1 In high dimensions any two vectors are (nearly) orthogonal

Optional reading

• AWH 11.6 Singularities; Branch-cut integrals

If they only got the phase in the Fresnel integral right, QM would look different

Got problems? Do them like a journalist

I heard it through the grapevine: how to pick a tolerable adviser?

You think you are stressed? Try finishing your thesis

7.1 Saddle-point expansions are asymptotic
The first trial ground for testing our hunches about field theory is the zero-dimensional
field theory, the field theory of a lattice consisting of one point, in case of the “φ4

theory” given a humble 1-dimensional integral

Z[J ] =

∫
dφ√
2π
e−φ

2/2−gφ4/4+φJ . (7.1)

The idea of the saddle-point expansions is to keep the Gaussian part φ2/2 (“free field”,
with a quadratic H0 “Hamiltonian”) as is, and expand the rest (HI “interacting Hamil-
tonian”) as a power series, and then evaluate the perturbative corrections using the
moments formula∫

dφ√
2π

φne−φ
2/2 =

(
d

dJ

)n
eJ

2/2
∣∣∣
J=0

= (n− 1)!! if n even, 0 otherwise .

http://ChaosBook.org/library/ArWeHa13chap12FurtherTopsAnalysis.pdf
http://ChaosBook.org/library/ArWeHa13chap13.pdf
http://YouTube.com/embed/IjzcYZJZKU0 
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/ln13.pdf
http://YouTube.com/embed/BugLWl9hQpI 
http://YouTube.com/embed/M-_uMldTN8Q 
http://YouTube.com/embed/C5N8sc7TjBg 
http://YouTube.com/embed/Brq7w43mdPg 
http://YouTube.com/embed/UKMUhi-9sng 
http://YouTube.com/embed/AeYNlQMtSFo 
http://YouTube.com/embed/S49LedVJbMo 
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Figure 7.1: Plot of the saddle-point estimate of Zn vs. the exact result (7.2) for
g = 0.1, g = 0.02, g = 0.01.

In this zero-dimensional theory the n-point correlation is a number exploding combi-
natorially, as (n− 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional φ4 field theory in the
saddle-point expansion to all orders:

Z[0] =
∑
n

Zng
n ,

Zn =
(−1)n

n!4n

∫
dφ√
2π
φ4ne−φ

2/2 =
(−1)

n

16nn!

(4n)!

(2n)!
. (7.2)

The Stirling formula n! =
√

2π nn+1/2e−n yields for large n

gnZn ≈
1√
nπ

(
4g

e
n

)n
. (7.3)

As the coefficients of the parameter gn are blowing up combinatorially, no matter how
small g might be, the perturbation expansion is not convergent! Why? Consider again
(7.1). We have tacitly assumed that g > 0, but for g < 0, the potential is unbounded
for large φ, and the integrand explodes. Hence the partition function in not analytic at
the g = 0 point.

Is the whole enterprise hopeless? As we shall now show, even though divergent, the
perturbation series is an asymptotic expansion, and an asymptotic expansion can be ex-
tremely good [6]. Consider the residual error after inclusion of the first n perturbative
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corrections:

Rn =

∣∣∣∣∣Z(g)−
n∑

m=0

gmZm

∣∣∣∣∣
=

∫
dφ√
2π
e−φ

2/2

∣∣∣∣∣e−gφ4/4 −
n∑

m=0

1

m!

(
−g

4

)m
φ4m

∣∣∣∣∣
≤

∫
dφ√
2π
e−φ

2/2 1

(n+ 1)!

(
gφ4

4

)n+1

= gn+1 |Zn+1| . (7.4)

The inequality follows from the convexity of exponentials, a generalization of the in-
equality ex ≥ 1 + x. The error decreases as long as gn |Zn| decreases. From (7.3) the
minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn|min ≈
√

4g

π
e−1/4g. (7.5)

As illustrated by the figure 7.1, a perturbative expansion can be, for all practical pur-
poses, very accurate. In Quantum ElectroDynamics, or QED, this argument had led
Dyson to suggest that the QED perturbation expansions are good to nmin ≈ 1/α ≈
137 terms. Due to the complicated relativistic, spinorial and gauge invariance structure
of perturbative QED, there is not a shred of evidence that this is so. The very best
calculations performed so far stop at n ≤ 5.

Predrag I find Córdova, Heidenreich, Popolitov and Shakirov [4] Orbifolds and exact
solutions of strongly-coupled matrix models very surprising. The introduction
is worth reading. They compute analytically the matrix model (QFT in zero
dimensions) partition function for trace potential

S[X] = tr (Xr) , integer r ≥ 2 . (7.6)

Their “non-perturbative ambiguity” in the case of theN = 1 cubic matrix model
seem to amount to the Stokes phenomenon, i.e., choice of integration contour for
the Airy function.

Unlike the weak coupling expansions, the strong coupling expansion of

Z =
1

2π

∫
dxe
− 1

2g2 x
2−x4

, (7.7)

is convergent, not an asymptotic series.

There is a negative dimensions type dualityN → −N , their eq. (3.27). The loop
equations, their eq. (2.10), are also interesting - they seem to essentially be the
Dyson-Schwinger equations and Ward identities in my book’s [5] formulation of
QFT.
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7.2 Notes on life in extreme dimensions
You can safely ignore this section, it’s “math methods,” as much as Predrag’s musings
about current research...

Exercise 7.1 is something that anyone interested in computational neuroscience [9]
and/or machine learning already knows. It is also something that many a contemporary
physicist should know; a daily problem for all of us, from astrophysics to fluid physics
to biologically inspired physics is how to visualize large, extremely large data sets.

Possibly helpful references:
Distribution of dot products between two random unit vectors. They denote Z =

〈X,Y 〉 =
∑
XiYi. Define

fZi
(zi) =

∫ ∞
−∞

fXi,Yi
(x,

zi
x

)
1

|x|
dx

then since Z =
∑
Zi,

fZ(z) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fZ1,...,ZD
(z1, . . . , zd) δ(z −

∑
zi) dz1 . . . dzd .

There is a Georgia Tech paper on this [12]. See also cosine similarity and Mathworld.
There is even a python tutorial. scikit-learn is supposed to be ‘The de facto
Machine Learning package for Python’.

Remark 7.1. High-dimensional flows and their visualizations. Dynamicist’s vision of
turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [11]. Computational
neuroscience grapples with closely related visualization and modeling issues [7, 8]. Much about
high-dimensional state spaces is counterintuitive. The literature on why the expectation value
of the angle between any two high-dimensional vectors picked at random is 90o is mostly about
spikey spheres: see the draft of the Hopcroft and Kannan [3] book and Ravi Kannan’s course;
lecture notes by Hermann Flaschka on Some geometry in high-dimensional spaces; Wegman
and Solka [13] visualizations of high-dimensional data; Spruill paper [12]; a lively mathover-
flow.org thread on “Intuitive crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [10] are akin in spirit to the low-dimensional pro-
jections of the POD modeling [2], in that both methods aim to capture key features and dynamics
of the system in just a few dimensions. But the ref. [10] method is very different from POD in
a key way: we construct basis sets from exact solutions of the fully-resolved dynamics rather
than from the empirical eigenfunctions of the POD. Exact solutions and their linear stability
modes (a) characterize the spatially-extended states precisely, as opposed to the truncated ex-
pansions of the POD, (b) allow for different basis sets and projections for different purposes and
different regions of state space, (c) these low-dimensional projections are not meant to suggest
low-dimensional ODE models; they are only visualizations, every point in these projections is
still a point the full state space, and (d) the method is not limited to Fourier mode bases.
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Exercises
7.1. In high dimensions any two vectors are (nearly) orthogonal. Among humble

plumbers laboring with extremely high-dimensional ODE discretizations of fluid and
other PDEs, there is an inclination to visualize the ∞-dimensional state space flow by
projecting it onto a basis constructed from a few random coordinates, let’s say the 2nd
Fourier mode along the spatial x direction against the 4th Chebyshev mode along the y
direction. It’s easy, as these are typically the computational degrees of freedom. As we
will now show, it’s easy but not smart, with vectors representing the dynamical states of
interest being almost orthogonal to any such random basis.
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Suppose your state spaceM is a real 10 247-dimensional vector space, and you pick from
it two vectors x1, x2 ∈M at random. What is the angle between them likely to be?
In the literature you might run into this question, formulated as the ‘cosine similarity’

cos(θ12) =
x1
> · x2

|x1 | |x2 |
. (7.8)

Two vectors with the same orientation have a cosine similarity of 1, two vectors at 90o

have a similarity of 0, and two vectors diametrically opposed have a similarity of -1. By
asking for ‘angle between two vectors’ we have implicitly assumed that there exist is a
dot product

x1
> · x2 = |x1 | |x2 | cos(θ12) ,

so let’s make these vectors unit vectors, |xj | = 1 . When you think about it, you would
be hard put to say what ‘uniform probability’ would mean for a vector x ∈M = R10 247,
but for a unit vector it is obvious: probability that x direction lies within a solid angle dΩ
is dΩ/(unit hyper-sphere surface).
So what is the surface of the unit sphere (or, the total solid angle) in d dimensions? One
way to compute it is to evaluate the Gaussian integral

Id =

∫ ∞
−∞
dx1 · · · dxd e−

1
2 (x2

1+···+x2
d) (7.9)

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Show, by examining the form of the integrand in the polar coordinates, that for an
arbitrary, even complex dimension d ∈ C

Sd−1 = 2πd/2/Γ(d/2) . (7.10)

In QFT, or Quantum Field Theory, integrals over 4-momenta are brought to polar
form and evaluated as functions of a complex dimension parameter d. This proce-
dure is called the ‘dimensional regularization’.

(c) Recast the integrals in polar coordinate form. You know how to compute this inte-
gral in 2 and 3 dimensions. Show by induction that the surface Sd−1 of unit d-ball,
or the total solid angle in even and odd dimensions is given by

S2k =
2(2π)k

(2k − 1)!!
, S2k+1 =

2πk+1

k!
. (7.11)

However irritating to Data Scientists (these are just the Gamma function (7.10)
written out as factorials), the distinction between even and odd dimensions is not
silly - in Cartan’s classification of all compact Lie groups, special orhtogonal groups
SO(2k) and SO(2k+1) belong to two distinct infinite families of special orthogonal
symmetry groups, with implications for physics in 2, 3 and 4 dimensions. For
example, by the hairy ball theorem, there can be no non-vanishing continuous
tangent vector field on even-dimensional d-spheres; you cannot smoothly comb
hair on a 3-dimensional ball.

(d) Check your formula for d = 2 (1-sphere, or the circle) and d = 3 (2-sphere, or the
sphere).

http://www.newscientist.com/blogs/nstv/2011/12/one-minute-math-why-you-cant-comb-a-hairy-ball.html
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(e) What limit does Sd does tend to for large d? (Hint: it’s not what you think. Try
Sterling’s formula).

So now that we know the volume of a sphere, what is a the most likely angle between two
vectors x1, x2 picked at random? We can rotate coordinates so that x1 is aligned with the
‘z-axis’ of the hypersphere. An angle θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P (θ)dθ of finding two vectors at angle θ is given by the area
of the meridional strip of width dθ, and derive the formula for it:

P (θ) =
1√
π

Γ(d/2)

Γ((d− 1)/2)
.

(One can write analytic expression for this in terms of beta functions, but it is un-
necessary for the problem at hand).

(g) Show that for large d the probability P (θ) tends to a normal distribution with mean
θ = π/2 and variance 1/d.

So, in d-dimensional vector space the two random vectors are nearly orthogonal, within
accuracy of θ = π/2± 1/d.
Null distribution: For data which can be negative as well as positive, the null distribution
for cosine similarity is the distribution of the dot product of two independent random unit
vectors. This distribution has a mean of zero and a variance of 1/d (where d is the number
of dimensions), and although the distribution is bounded between -1 and +1, as d grows
large the distribution is increasingly well-approximated by the normal distribution.

In high dimensions any two vectors are (nearly) orthogonal - If I am 2 meters tall,
how tall does a graduate student look to me, if grad students are randomly dis-
tributed in a million directions?

If you are a humble plumber simulating turbulence, and trying to visualize its state space
and the notion of a vector space is some abstract hocus-pocus to you, try thinking this
way. Your 2nd Fourier mode basis vector is something that wiggles twice along your
computation domain. Your turbulent state is very wiggly. The product of the two func-
tions integrated over the computational domain will average to zero, with a small leftover.
We have just estimated that with dumb choices of coordinate bases this leftover will be of
order of 1/10 247, which is embarrassingly small for displaying a phenomenon of order
≈ 1.
Several intelligent choices of coordinates for state space projections are described in
ChaosBook section 2.4, the web tutorial ChaosBook.org/tutorials, and Gibson et al. [10].

Sara A. Solla and P. Cvitanović
7.2. Airy function for large arguments. Important contributions as stationary phase

points may arise from extremal points where the first non-zero term in a Taylor expansion
of the phase is of third or higher order. Such situations occur, for example, at bifurcation
points or in diffraction effects, such as waves near sharp corners, waves creeping around
obstacles, etc.. In such calculations, one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy−

y3

3
) . (7.12)

Calculate the Airy function Ai(x) using the stationary phase approximation. What hap-
pens when considering the limit x → 0? Estimate for which value of x the stationary
phase approximation breaks down.

http://YouTube.com/embed/e2nJeuL3M94 
http://ChaosBook.org/chapters/ChaosBook.pdf#section.2.4
http://ChaosBook.org/tutorials
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