
mathematical methods - week 9

Fourier transform

Georgia Tech PHYS-6124
Homework HW #9 due Thursday, October 22, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.2 d-dimensional Gaussian integrals 5 points
Exercise 9.3 Convolution of Gaussians 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 19, 2020
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http://ChaosBook.org/~predrag/courses/PHYS-6124-20/exerWeek9.tex
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Week 9 syllabus Tuesday, October 13, 2020

There is only one thing which interests me vitally now, and that
is the recording of all that which is omitted in books. Nobody,
as far as I can see, is making use of those elements in the air
which give direction and motivation to our lives.

— Henry Miller, Tropic of Cancer

This week’s lectures are related to AWH Chapter 19 Fourier Series (click here), but
I prefer Stone and Goldbart [3] (click here) Appendix B exposition, which I follow
closely in the online recorded lectures. The fastest way to watch any week’s lecture
videos is by letting YouTube run the course playlist (click here).

ChaosBook Sect. A24.4 Continuum field theory: Fourier transform as the limit
of a discrete Fourier transform.

Propagator in continuum limit

Stone and Goldbart (click here) Appendix B.1 Fourier Series

Propagator in continuum limit

Fourier representation, circular Kronecker delta, take #2

Fourier series

Circular Dirac delta function

Stone and Goldbart (click here) Appendix B.2 Fourier integral transforms

Fourier integral transform

Persival identity

Fourier transform of a Gaussian

– Exercise 9.3 Convolution of Gaussians

Convolution of Gaussians

Covariance evolution

Cigar is sometimes just a cigar

* sect. 9.2 A bit of noise.
Noise : seminars and papers

The fearful power of symmetry - translational invariance

– example 9.1 Circulant matrices.

– example 9.2 Convolution theorem for matrices.

Optional reading

http://ChaosBook.org/library/ArWeHa13chap19.pdf
http://ChaosBook.org/library/StGoAppB.pdf
https://www.youtube.com/watch?v=EjRrjE71dQo&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=78
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.4
http://YouTube.com/embed/EjRrjE71dQo
http://ChaosBook.org/library/StGoAppB.pdf
http://YouTube.com/embed/EjRrjE71dQo
http://YouTube.com/embed/xmMWaybsOyQ
http://YouTube.com/embed/M6mW_yO_kGw
http://YouTube.com/embed/R6YnKEogfUc
http://ChaosBook.org/library/StGoAppB.pdf
http://YouTube.com/embed/841DAt79r9g
http://YouTube.com/embed/EkA6DYU4E7k
http://YouTube.com/embed/cOIH0U6n8Ds
http://YouTube.com/embed/i7RqJMt1jHc
http://YouTube.com/embed/KN8zhrJeGg4
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/videos/week9/cigar.pdf
http://ChaosBook.org/overheads/noise/index.html
http://YouTube.com/embed/rHdKmMSbhI8


9.1. EXAMPLES 89

Discussion: Verbotten! We will not prove Reimann Hypothesis, nor will we ex-
plain Wiles proof of Fermat Conjecture in this course. No other course offers
intuition. You do not know how lucky you are, boy. You could be back in US
back in US back in USSR. As a rule, I do not approve of abuse of children, but
Prof. Z is for your own good. Learning from your mistakes is the only way to
learn. Countable infinity of professorial opinions. Getting a beating from a class
in uprising.

Farazmand notes on Fourier transforms.

Grigoriev notes
4. Integral transforms, 4.3-4.4 square wave, Gibbs phenomenon;
5. Fourier transform: 5.1-5.6 inverse, Parseval’s identity, ..., examples

Roger Penrose [2] (click here) chapter on Fourier transforms is sophisticated, but
too pretty to pass up.

Alex Kontorovich, on the history of Fourier series: As often happens in mathe-
matics, Fourier was trying to do something completely unrelated when he stum-
bled on Fourier series. What was it? He was studying the propagation of heat in
a uniform medium.

Bernard Maurey, Fourier, One Man, Several Lives (2019).

Question 9.1. Henriette Roux asks
Q You usually explain operations by finite-matrix examples, but in exercise 9.3 you asked us
to show that the Fourier transform of the convolution corresponds to the product of the Fourier
transforms only for continuum integrals. The exercise gives me no intuition for what a convolu-
tion is.
A “Convolution” is a matrix multiplication for translationally invariant matrix operators. For
what that is for discrete Fourier transforms, and what is a “convolution theorem” for matrices,
see example 9.2 and The fearful power of symmetry - translational invariance.

9.1 Examples
Example 9.1. Circulant matrices. An [L×L] circulant matrix

C =



c0 cL−1 . . . c2 c1
c1 c0 cL−1 c2
... c1 c0

. . .
...

cL−2

. . .
. . . cL−1

cL−1 cL−2 . . . c1 c0

 , (9.1)

has eigenvectors (discrete Fourier modes) and eigenvalues Cvk = λkvk

vk =
1√
L

(1, ωk, ω2k, . . . , ωk(L−1))T , k = 0, 1, . . . , L − 1

λk = c0 + cL−1ω
k + cL−2ω

2k + . . .+ c1ω
k(L−1) , (9.2)

http://YouTube.com/embed/Nno0nOHdhMI
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/FourierLectFaraz.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/ln4.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-20/ln5.pdf
http://ChaosBook.org/library/Penr04-9.pdf
https://sites.math.rutgers.edu/~alexk
https://threadreaderapp.com/thread/1171519369089667072.html
https://www.ems-ph.org/journals/newsletter/pdf/2019-09-113.pdf#page=10
http://YouTube.com/embed/rHdKmMSbhI8
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where
ω = e2πi/L (9.3)

is a root of unity. The familiar examples are the one-lattice site shift matrix (c1 = 1, all
other ck = 0), and the lattice Laplacian �.

Example 9.2. Convolution theorem for matrices. Translation-invariant matrices
can only depend on differences of lattice positions,

Cij = Ci−j,0 (9.4)

All content of a translation-invariant matrix is thus in its first row Cn0, all other rows are
its cyclic translations, so translation-invariant matrices are always of the circulant form
(9.1). A product of two translation-invariant matrices can be written as

Aim =
∑
j

BijCjm ⇒ Ai−m,0 =
∑
j

Bi−j,0 Cj−m,0 ,

i.e., in the “convolution” form

An0 = (BC)n0 =
∑
`

Bn−`,0 C`0 (9.5)

which only uses a single row of each matrix; N operations, rather than the matrix multi-
plication N2 operations for each of the N components An0.

A circulant matrix is constructed from powers of the shift matrix, so it is diagonalized
by the discrete Fourier transform, i.e., unitary matrix U . In the Fourier representation,
the convolution is thus simply a product of kth Fourier components (no sum over k):

UAU† = UBU†UCU† → Ãkk = B̃kkC̃kk . (9.6)

That requires only 1 multiplication for each of the N components An0.

9.2 A bit of noise
Fourier invented Fourier transforms to describe the diffusion of heat. How does that
come about?

Consider a noisy discrete time trajectory

xn+1 = xn + ξn , x0 = 0 , (9.7)

where xn is a d-dimensional state vector at time n, xn,j is its jth component, and ξn
is a noisy kick at time n, with the prescribed probability distribution of zero mean and
the covariance matrix (diffusion tensor) ∆,

〈ξn,j〉 = 0 , 〈ξn,i ξTm,j〉 = ∆ij δnm , (9.8)

where 〈· · ·〉 stands for average over many realizations of the noise. Each ‘Langevin’
trajectory (x0, x1, x2, · · · ) is an example of a Brownian motion, or diffusion.
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In the Fokker-Planck description individual noisy trajectories (9.7) are replaced by
the evolution of a density of noisy trajectories, with the action of discrete one-time step
Fokker-Planck operator on the density distribution ρ at time n,

ρn+1(y) = [Lρn](y) =

∫
dxL(y, x) ρn(x) , (9.9)

given by a normalized Gaussian (work through exercise 9.2)

L(y, x) =
1

N
e−

1
2 (y−x)

T 1
∆ (y−x) , N = (2π)d/2

√
det (∆) , (9.10)

which smears out the initial density ρn diffusively by noise of covariance (9.8). The
covariance ∆ is a symmetric [d×d] matrix which can be diagonalized by an orthogonal
transformation, and rotated into an ellipsoid with d orthogonal axes, of different widths
(covariances) along each axis. You can visualise the Fokker-Planck operator (9.9) as
taking a δ-function concentrated initial distribution centered on x = 0, and smearing it
into a cigar shaped noise cloud.

As L(y, x) = L(y − x), the Fokker-Planck operator acts on the initial distribution
as a convolution,

[Lρn](y) = [L ∗ ρn](y) =

∫
dxL(y − x) ρn(x)

Consider the action of the Fokker-Planck operator on a normalized, cigar-shaped
Gaussian density distribution

ρn(x) =
1

Nn
e−

1
2x
T 1

∆n
x , Nn = (2π)d/2

√
det (∆n) . (9.11)

That is also a cigar, but in general of a different shape and orientation than the Fokker-
Planck operator (9.10). As you can check by working out exercise 9.3, a convolution
of a Gaussian with a Gaussian is again a Gaussian, so the Fokker-Planck operator maps
the Gaussian ρn(xn) into the Gaussian

ρn+1(x) =
1

Nn+1
e−

1
2x
T 1

∆n+∆ x , Nn+1 = (2π)d/2
√

det (∆n + ∆) (9.12)

one time step later.
In other words, covariances ∆n add up. This is the d-dimensional statement of the

familiar fact that cumulative error squared is the sum of squares of individual errors.
When individual errors are small, and you are adding up a sequence of them in time,
you get Brownian motion. If the individual errors are small and added independently
to a solution of deterministic equations (so-called ‘drift’), you get the Langevin and the
Fokker-Planck equations.
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Exercises
9.1. Who ordered

√
π ? Derive the Gaussian integral

1√
2π

∫ ∞
−∞

dx e−
x2

2a =
√
a , a > 0 .

assuming only that you know to integrate the exponential function e−x. Hint, hint: x2 is
a radius-squared of something. π is related to the area or circumference of something.

9.2. d-dimensional Gaussian integrals. Show that the Gaussian integral in d-dimensions
is given by

Z[J ] =

∫
ddx e−

1
2
x>·M−1·x+x>·J

= (2π)d/2|detM |
1
2 e

1
2
J>·M·J , (9.13)

where M is a real positive definite [d × d] matrix, i.e., a matrix with strictly positive
eigenvalues, x and J are d-dimensional vectors, and (· · · )> denotes the transpose.
This integral you will see over and over in statistical mechanics and quantum field the-
ory: it’s called ‘free field theory’, ‘Gaussian model’, ‘Wick expansion’, etc.. This is the
starting, ‘propagator’ term in any perturbation expansion.
Here we require that the real symmetric matrix M in the exponent is strictly positive def-
inite, otherwise the integral is infinite. Negative eigenvalues can be accommodated by
taking a contour in the complex plane [1], see exercise 6.3 Fresnel integral. Zero eigen-
values require stationary phase approximations that go beyond the Gaussian saddle point
approximation, typically to the Airy-function type stationary points, see exercise 7.2 Airy
function for large arguments.

9.3. Convolution of Gaussians.
(a) Show that the Fourier transform of the convolution

[f ∗ g](x) =

∫
ddy f(x− y)g(y)

corresponds to the product of the Fourier transforms

[f ∗ g](x) =
1

(2π)d

∫
ddk F (k)G(k)e+ik·x , (9.14)

where

F (k) =

∫
ddx

(2π)d/2
f(x) e−ik·x , G(k) =

∫
ddx

(2π)d/2
g(x) e−ik·x .

http://books.google.com/books?vid=ISBN9781446418208
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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(b) Consider two normalized Gaussians

f(x) =
1

N1
e
− 1

2
x>· 1

∆1
·x
, N1 =

√
det (2π∆1)

g(x) =
1

N2
e
− 1

2
x>· 1

∆2
·x
, N2 =

√
det (2π∆2)

1 =

∫
ddk f(x) =

∫
ddk g(x) .

Evaluate their Fourier transforms

F (k) =
1

(2π)d/2
e

1
2
k>·∆1·k , G(k) =

1

(2π)d/2
e

1
2
k>·∆2·k .

Show that the convolution of two normalized Gaussians is a normalized Gaussian

[f ∗ g](x) =
(2π)−d/2√

det (∆1 + ∆2)
e
− 1

2
x>· 1

∆1+∆2
·x
.

In other words, covariances ∆j add up. This is the d-dimenional statement of the famil-
iar fact that cumulative error squared is the sum of squares of individual errors. When
individual errors are small, and you are adding up a sequence of them in time, you get
Brownian motion. If the individual errors are small and added independently to a solution
of a deterministic equation, you get Langevin and Fokker-Planck equations.
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