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A general scheme of fractal decomposition of exponential operators is presented in any order 
m. Namely, exp[x(A + B)] = S,n (x) + 0(x’” + i ) for any positive integer m, where 
s,, (x) = ,#A (peQ $5.. .$rrA with finite M depending on m. A general recursive scheme of 
construction of {t,) is given explicitly. It is proven that some of {t,} should be negative for 
m>3 and for any finite M (nonexistence theorem of positive decomposition), General 
systematic decomposition criterions based on a new type of time-ordering are also formulated. 
The decomposition exp [x(A + B) ] = [S,, (x/n) ] ’ + 0(x” + l/n”) yields a new efficient 
approach to quantum Monte Carlo simulations. 

I. INTRODUCTION 
The concept of fractal path integrals is introduced in 

this paper, namely, a general new scheme of fractal decom- 
position of exponential operators is presented together with 
some explicit real and complex representations. A brief re- 
port of the present idea has already been given in a previous 
letter.’ 

The main purpose of the present paper is to find a sys- 
tematic series of approximants of the form 

f,,, (A,JJ) = e’~Ae”@e’,Ae@. . .efwA, (1.1) 
for the exponential operator exp[x(d + B)] with real or 
complex numbers {tj> with finite M. Namely, the product 
operator ( 1.1) for integer m plays a role of the mth approxi- 
mant of exp[x(d + B) ] in the sense that 

exp[x(A + B) 1 =A, MB) + 0(x” + ‘) (1.2) 
for small x. 

The above new scheme ( 1.2) with ( 1.1) is very useful in 
studying theoretically quantum many-body systems using 
the following generalized Trotter formula:2-5 

ew[xGf+B)l= [.L($-,$]“+O(G) (1.3) 

for the approximantf, (A$) in ( 1.2). Thus we find that the 
convergence of our new scheme is extremely rapid for 
x/n 4 1. This choice of decomposition is practically impor- 
tant in quantum Monte Carlo simulationsk7 

In Sec. II, a general recursion method’ is presented to 
explicitly obtain the decomposition formula ( 1.2) and some 
symmetry relations of decomposition are derived, particu- 
larly concerning the relation between the (2m - 1)th and 
2mth approximants. In Sec. III, some typical schemes of real 
decomposition are presented explicitly. Complex decompo- 
sition is given in Sec. IV. The proof of nonexistence of “posi- 
tive decomposition” [i.e., ( 1.1) with all positive {f,}] is giv- 
en in Sec. V. In Sec. VII, a general method to expand the 
product ( 1.1) in a power series of the operators A and B is 
proposed. This is a time-ordering method analogous to 
Feynman’s time-ordering technique. Sum rules concerning 

the coefficients of the power-series expansion of the expo- 
nential operator exp [ x (A + B) ] are also derived. These sum 
rules are conveniently used in reducing the number,of equa- 
tions to determine the parameters it,) in ( 1. 1 ), as will be 
seen later. In Sec. VII, general decomposition conditions are 
derived explicitly. In Sec. VIII, a fractal-temperature quan- 
tum Monte Carlo method is formulated with an emphasis on 
the rapid convergence of it. In Sec. IX, a fractal-time’Monte 
Carlo method is discussed with some possible applications to 
nuclear physics and to chemical reactions. A combination of 
the present fractal decomposition and Sorella’s method is 
proposed in Sec. X. Summary and discussion are given in 
Sec. XI. 

II. RECURSION METHOD AND SYMMETRY 
PROPERTIES OF DECOMPOSITION 

It is extremely complicated to determine the parameters 
it,) in such a primitive way as we expand ( 1.1) and equate 
each term thus obtained to the corresponding term of the 
original exponential operator exp [x&4 + B) 1, as will be 
seen in Sec. VII. 

In the present section, we devise a recursion method to 
find a systematic series of approximants ( 1.1)) namely, we 
have the following fractal decomposition theorem.’ 

Theorem 1 (construction theorem): For the exponen- 
tial operator exp [x( A, + A, + * + * + A, ) 1, we consider the 
following (m - 1 )th approximant: 

exp (2.1) 

Then, the mth approximant Q, (x) is constructed as fol- 
lows: 

Q, (xl = fj em-1 (P,.,x)> (2.2) 
j= I 

for r>2, where the parameters {p,,,) are the solutions of the 
following decomposition condition that 

0, with i pm,, = 1. (2.3) 
j=l 
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The proof is easily given from the following identity: 

exp(x $, AA) = jfi, exp(Ptn.jX $, A&) . (2.4) 
First, we substitute the (m - l)th approximant 
Q,, _ , (p,,. jx) in each factor of (2.4). The decomposition 
condition (2.3) is derived both from the requirement that 
the sum of the uncontrollable mth-order terms in (2.4) 

xfi, P:.J$, fq (2.5) 

should vanish, and from the requirement that the corre- 
sponding sum of the mth-order terms in each Q, _ , (p, jx) 
should also vanish. In order to study the latter condition 
explicitly, we write the mth-order term of Q, _ , (x) as 

[em-, (x)]m =X’“P,n({AjI). (2.6) 
Then, the sum of the mth-order terms in each factor of the 
right-hand side of (2.4) is given by 

xl” 
( > 
,i, P::., Pm ({A,}). (2.7) 

Fortunately we find that the two uncontrollable expressions 
(2.5) and (2.7) vanish under the single common condition 

c PE., = 0. 
/=I 

(2.8) 

Thus we arrive at Theorem 1. It should be remarked here 
that only cross terms of each factor Q, _ , (p,,, jx) in (2.2) 
contribute to the mth-order term of Q,, (x). This is one of 
the reasons why the convergence of the present new scheme 
is very rapid and why it is physical in the sense that quantum 
coherence comes from the noncommutativity of the opera- 
tors A and B, namely, the cross effect. 

Next, we discuss the equivalence theorem’** between 
the (2m- 1) th and 2mth approximants, when they are sym- 
metric, namely, 

Qzm _ , ( - x)Qz,n -, (xl = 1. (2.9) 
We have the following theorem. 

Theorem 2 (symmetry theorem): We assume that the 
original operator F(x) with a parameter x is symmetric in 
the sense that 

F(x)F( -x) = 1; F(0) = 1, (2.10) 

and for it we construct, in general, a symmetric (2m - 1) th- 
order approximant GZm _ , (x), namely, 

F(x) = G,, _ , (x) + 0(x2”), (2.11) 

where 

Gz,n _ , (x)G,,, _ , ( - xl = 1. (2.12) 

Then, G2,,, _ , (x) is also correct up to the order ofx2’n, name- 
ly, 

G2,n _ , (xl = Gz,,, 0). (2.13) 

This theorem was mentioned briefly in Ref. 2 without 
detailed proof. The proof is given as follows. First, we put 

F(x) = G,, - , (xl + xZmR2,,, ({A,)) + 0(x*” + ‘I. 
(2.14) 

Then, from (2. lo), we have 

+ Gz,- 1 (X)Rzm (CA,)) = O(X), (2.15) 

using the symmetry property (2.12). As we have 
G 2m-1 (0) = 1 (unit operator) from (2.10) and (2.12), we 
arrive finally at 

R2m (CA,)) = 0, (2.16) 

by putting x = 0 in (2.15)) namely, we have the desired rela- 
tion (2.13). 

This theorem is particularly useful when the odd ap- 
proximant G,, _ , (x) is easily obtained, as will be seen later. 

III. REAL DECOMPOSITION BASED ON THE 
RECURSION METHOD 

In the present section, we explicitly derive some typical 
schemes of real decomposition using the general recursion 
method. 

The simplest decomposition of exp [x (A + B) ] is 

f, (A,B) = exAexS (3.1) 

as is well known. This is of the first order of x. The simplest 
second-order decomposition is given by the following sym- 
metric product:‘-’ 

S(x) = e w/2MexBew2L4, (3.2) 
namely, 

e x(A + B, = S(x) f 0(x3). (3.3) 

First, we consider the case r = 3 in Theorem 1. Namely, 
we start from the following identity 

&44 + B) = @4 + B)e( I - ZS).x(A + mpL4 + B) (3.4) 
The third-order symmetric approximant S, (x) is given by 

s, (x) = S(sx)S(( 1 - 2s)x)S(sx), (3.5) 
where the parameter s is given’ by the real solution of the 
equation 

2s3+ (1 -2s)‘=O, (3.6) 
according to Theorem 1, namely, 

s = l/(2 - 38) = 1.3512... . (3.7) 
Thus the simplest real decomposition of third order is given’ 
explicitly by 

s, (x) = ,cv2b4esxBe[ (1 - SV21XAe( I - 2S)XB 

Xe[” -ss)/21*AerxBe(s/2)&4 
, (3.8) 

with s in (3.7). This is symmetric in the sense that 

s, (x)S, ( -x) = 1. (3.9) 
Then, we can supply Theorem 2 to obtain the fourth-order 
approximant S, (x) as 

s, (xl = s3 (xl. (3.10) 

In general, the (2m - 1 )th and 2mth approximants, 
S 2m _ , (x) and S,,,, (x), are determined recursively as 
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s,, -1 (xl = s2, (xl 

=S2m-3 (k,x)&, - ,((I - 2k, lx) 

X&,-,(k,x), (3.11) 

where 
k, = (2 _ 21/(*m- 1)) - 1. (3.12) 

It should be noted here that all the parameters {k,} are 
larger than unity (i.e., k, > 1 ), and consequently that this 
series of approximants is not convergent in the limit m--t 00. 
Thus this scheme of decomposit ion is not practical for large 
172, 

Next, we try to find a practical scheme of real decompo- 
sition, namely, for real t, whose magnitude is less than unity 
(i.e., [t, 1  < 1) . For this purpose, we consider* the following 
symmetric real decomposit ion for the exponential operator 

F(x)=exp[x(A, + A, + *** + A,)] 

=Sfm(x) +O(xZm+‘). (3.13) 

From Theorems 1 and 2, we have the recursion formula’ 

s:m:,x1 =s,*,-,(x1 

= [s:,~,(P,x)]‘s:,~,((1-4P,)X) 

x [cn-dP,A]’ (3.14) 
with the first- (or second-) order symmetrized decomposi- 
tion’ 
s, *(X) = s(x) Ee(x/*)4e(~‘*f4.. .e(x’2)4 I 

Xe4emA, 5.. .eW%4Q,(x/=41, (3.15) 

where the parameterp, is the real solution of the equation’ 

4ppz,” - ’ + (1 -4pm)2m-‘=0, 
i.e., pm = (4 - 4’/(*” - ‘)) - ‘. (3.16) 

In this scheme, we have 

f<pm <j and II -4p,,I<:, (3.17) 

for all m  ( 22). The parameters { tj} in ( 1.1) for the 2mth- 
order approximant are given by the product of some combi- 
nations of 

P2 tP3 l+*.YP, T  1 -4p*, 1 - 4p, )..., 1  -4pm. 
(3.18) 

Therefore, we have 

lim tj = 0, (3.19) 
m-m 

for allj. Namely, each separation of the present decomposi- 
tion becomes infinitesimally small for m  -+ CO and its struc- 
ture is asymptotically fracta18’9 as shown in Fig. 1. The con- 
vergence of S $, (x) to the original exponential operator 
F(x) in the Banach space will be discussed elsewhere. 

There are many other alternative kinds of decomposi- 
tion of the form ( 1.1) with real numbers {t,}. For more 
general schemes, see Sec. VII. 

IV. COMPLEX DECOMPOSITION Clearly, we have 4 < /pm I< 1 for m>2 and 

It is much easier to find complex decomposit ion of the 
form ( 1.1)) namely, with complex {tj). For this purpose, 

lim pm = :. 
m-cc 

FIG. 1. Fractal structure of the decomposit ion S:,(x). (a) S:(x) 
==Sf(x); II =I,, =&, ts=r,=f(l-3p,), t,=l-4pz, others 
=PZ. Ch) S:(x) =  S,*(x); the number  j denotes f,; t, =  ts, =  tpzpJ1 

t, = t; = t,, = t,, = t,, = t,, = t&! = t4, = ?,( 1 - 3p, )p,, tb = t,, = t,, 
=h =(1--4Pl)P,, t,, =t.xt =~&(1-3p,), tzz =t&$=t>+ =tz* 
= t>q =t,,, =Pz(l -4P,), t,, =t,, =g1--3Pz)(l-4p,), tlL 
= (‘I -4p,)(l -4p,), others = PZP,; where PZ 
= 0.414 490  771  794  375  7  .,,, and  p, = 0.313 065 827 733 272 8,.. , Fur- 

thermore, all t, are measured in the unit of x. 

only Theorem 1 is sufficient, because the decomposit ion con- 
dition (2.3) in Theorem 1 has always some complex solu- 
tions for any integer m. 

For example, we consider the case Y = 2. Then, the 
third-order decomposit ion is given’ by 

Q:*‘(x) = S(ax)S(Zx), (4.1) 

with S(X) defined by (3.15) and with Z  = 1 - a = complex 
conjugate of a, where a and Z  are the solutions of the equa- 
tion 

3a2 - 3a + 1 = 0, i.e., a  = (3 + &)/6. (4.2) 
More explicitly we have” 

Q:*‘(X) = e W2)xAeoxBe( 1/2fxAecTxBe( l/t)ijxA 

for 4 = 2 in (3.15). 

(4.3) 

In general, the mth order approximant is recursively 
given by 

Q:‘(x) =Q:k,(p,x)Qkf’_,((l -pm)x), (4.4) 
with the decomposit ion condition 

p: + (1 -pm 1” = 0, i.e., pm = (1 + exp(h/m))-‘. 
(4.5) 

(4.6) 
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It is easy to find many other series of complex decomposi- 
tion, The fractal structure of complex decomposition is 
much simpler than that of real decomposition. 

V. NONEXISTENCE THEOREM OF POSITIVE 
DECOMPOSITION 

In Sec. III, we have given explicitly real decomposition 
of the form ( 1.1) using the recursion formula (Theorem 1). 
Now arises a question whether there exists positive real de- 
composition (i.e., all f, > 0) or not. To answer this question, 
we have the following theorem. 

Theorem 3 (nonexistence theorem of positive decompo- 
sition): There exists no decomposition of the form 

e x1.4 t B) = eVe%BehAe@. . .e*r,A 
+ O(Xrnf’), (5.1) 

with all t, positive and finite M for m>3 and for noncom- 
mutable operators A and B. 

As a corollary of this theorem, we have the proposition 
that there exists no real positive decomposition 

exp = er~~A@2Ak. .e’W%. . . 
+ O(xm+‘), (5.2) 

for m>3 and for a finite number of products, where q>2. 
In order to prove Theorem 3, it is sufficient to prove it 

for tn = 3. For this purpose, it is convenient to note that the 
term AB ’ in the product 

e ~r,,4~.t\,/J xl,A 
e e x,:B. . . exr*Berrr4 

is, in general, given by 
(5.3) 

;;z; t,(, z+, s,)aB2. 
J 

This has to be equal to AB 2/6, namely, we have 

Similarly, for the term BA 2 we have 

,g, sJ(kgJ th>2 = + * 

(5.4) 

(5.5) 

(5.6) 

Theexistenceof positive solutions {t,} and {sj} of Eqs. (5.5) 
and (5.6) is only the necessary condition for the existence of 
real positive decomposition. However, it is sufficient for the 
proof of Theorem 3, to show that there exist no positive real 
solutions in ( 5.5) and (5.6) under the conditions that 

J.t,‘J = 
1 and isJ=l. (5.7) 

J=, 

At a glance, it looks very difficult to prove the above state- 
ment. However, it is found to be possible by changing the 
variables (f,} as 

XJ =& i th, 
kzj 

(5.8) 

for positive sJ. Then, Eq. (5.6) is transformed into the hy- 
persphere 

x; +x: + ... +x; = (l/$)2. (5.9) 
On the other hand, Eq. (5.5) is rewritten as 

(5.10) 

using the relation to = 1 - t, - t, - . . * - tp. This is again 
transformed into the following hyperplane: 

j$, ajxJ = 3 ) (5.11) 

where 

sk 
> 

and aP = sP3’* (5.12) 

The distance R between this hyperplane and the origin in the 
p-dimensional space is given by 

R = ;f({s,}) - I’*, (5.13) 

where 

ftCs,l) = i a,‘. 
j=l 

If R Q l/G, there exists a real solution of the simultaneous 
equations (5.5) and (5.6). Otherwise, there exists no posi- 
tive real solution. Now we try to find the maximum of the 
functionf( {s,}) in the range 0 <sj < 1. If the maximum of 
f({s,>) is less than 4/3, then there exists no positive real 
solution of (5.5) and (5.6). 

Now the maximum off( {s,}) is shown to be given at the 
symmetric point 

s, = s2 = s3 = *a* = sp = l/p. (5.15) 

For the derivation of this statement, see the Appendix. Thus 
the maximum off( {sj>) is given by 

f,,, =s( ($1) = + (4 - j) * (5.16) 

Clearly, we have 

fmax <4, (5.17) 

for finitep. Therefore, we finally arrive at the conclusion that 
there exists no real positive decomposition of the form ( 1.1) 
for m = 3. This yields immediately Theorem 3 for m>3. 

It is interesting to remark that the functionf( {sj}) has 
the maximum value 4/3 only in the limit p --t CO as seen from 
(5.16) In fact, the ordinary Trotter formula”*‘2 

e x(A+ B) = lim (exA/ne~B/,t)n 

n-m 
(5.18) 

may be one of the examples for ( 5.1) withp -+ CO and m + CO. 
From Theorem 3, we may conclude that our previous 

fractal decomposition with negative {t,} in Sec. III is sub- 
stantial in its character. A physical meaning of this decom- 
position will be discussed later. Clearly, from our construc- 
tion scheme of decomposition, there are many alternative 
schemes that always include some negative {t,}. In Sec. XI 
and Sec. XII, we discuss a systematic general scheme of de- 
composition. 

VI. TIME-ORDERING METHOD AND SUM RULES 

According to Feynman’s path integral method, for ex- 
ample, the density matrix of a quatum system is represented 
by some time-ordered exponential.‘3-‘4 More explicitly we 
frequently use the well-known formula 
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$3(A+B)=P exp [ ($ A(Th-h)exp(l B(?)dr)] (6.1) 

using the time-ordering operator P, namely, 

p(A(T’)B(r2))= 
A(T, )B(T~), for 71 <r2, 
B(T )A(r,), for r <r (6.2) 

2 2 I’ 

In the present section, we give an inverse formulation, 
namely, we propose here a general method to express the 
product of exponential operators (5.1) as a single exponen- 
tial operator using the time-ordering method. 

Now, we consider first the following product 
E(A,B) = e’@et2Be’:Ae”B.. .e’s~A, (6.3) 

Our purpose is to find any order of E (A,B) as efficiently as 
possible. A primitive and tedious method may be to expand 
each exponential operator into a power series ofA or B and to 
collect the required terms. This is too complicated and not 
practical even for small M. 

Our proposal is the following. First we write tjA as Aj 
and t, B as B, . We introduce a time-ordering operator P as 

P(AjAk) = 
AjAk > for j<k, 
A A, 

k J’ for k <j, 

P(A,B,) = 
AjBk> for j-ck, 
B A, 

k JF for kj, 

(6.4) 

(6.5) 

etc., as usual. Then we may express E(A,B) as 

-&A,& = p exP c A,-, f c & 
( ( j=l x=1 

= P(exp(j~l A2j- l)exp(kz, B2k)) 

p((i~,A2j-')"(k~,B2*)m). 

(6.6) 

After the operation of the time-ordering P, we replace Aj and 
B, by tjA and tkB, respectively. 

For example, the third-order term of the form A 3 is ob- 
tained as 

fp(j~,A2j-t)‘=f(j~,f2j-t)a3. (6.7) 

as it should be. The terms AB 2, B ‘A, and BAB are obtained 
as 

&p((j&*A2j- ‘)(k;,B2k)2) . . 
=+ -5: f2j-t(gt2k)‘AB2 

J 1 

This expression has already been used in deriving the rela- 
tions (5.5). The terms A ‘B, BA 2, and ABA aregiven similar- 
ly. Clearly, from (6.8) we obtain the following sum rule, 

namely, the sum of the coefficients ofAB ‘, B ‘A, and BAB is 
given by 

3 (,E, %- l)(kIX, t2kya (6.9) 

This kind of sum rule is very convenient in practical 
calculations, since the number of equations for the decompo- 
sition condition is highly reduced using this sum rule. For 
example, we consider the symmetric decomposition 

e x( A + B) _ &xAeqxBerxAe~xB - 

X erxAeqxBtixA + 0(x4). (6.10) 

The whole correct third-order term of exp(x( A + B)) is giv- 
en by 

(x3/6) (A + B)3 = (x3/6) (A 3 + A ‘B + BA ’ + ABA 

+AB2+B2A+BAB+B3). (6.11) 

On the other hand, the third-order term of the right-hand 
side of Eq. (6.10) is expressed in the form 

(x3/6)(A3+B3) +{a(AB*+B*A) +/?BAB 

+ y(A 2B + BA 2, + SABA )x3, (6.12) 

using the symmetry property of (6.10) with respect to trans- 
position. Furthermore the above sum rule yields 

2atB= 4 and 2y+S=1,. (6.13) 

Consequently, if only the two coefficients are determined 
correctly, then all the other terms becomeautomatically cor- 
rect in the third order. 

This reduction of the number of equations for decompo- 
sition conditions based on the sum rule has been one of our 
clues to try to iind the proof of Theorem 3 (the nonexistence 
theorem of positive decomposition) in Sec. V. In fact, Eqs. 
(5.5) and ( 5.6) are now found to be necessary and sufficient 
conditions for the third-order symmetric decomposition, if 
we apply the above sum rule to this problem. 

VII. GENERAL CRITERIONS OF DECOMPOSITIONS 
In this section, we study a general scheme of decomposi- 

tion of the form 

ev(xh$Ah)= ,o, kfi, exP(tjkAA ) -I- 0(x”+ ‘1 

with the conditions 
(7.1) 

.$, t jh =x, for all k. (7.2) 

First, we write tjkAL as 
tjkAk = Ajk. (7.3) 

We introduce here the following time-ordering operator P: 

(Ajdi,t for j<i or 
for j = i, k =c r, 
for i<j or (7.4) 

Then, we have 
for i=j, rck. 
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= p(ft, enpCZ,&)) . (7s) 

We obtain the following sum rules, namely, the sum of the 
coefficients of all the products ofp, A, ‘s, pz AZ’s,..., andp, 
A,‘s is given by 

in! + 1 
p,!p2!.-*pq! m. p,!pr!***p4! ’ 

(7.6) 

where 

PI +P2 + c** +p4 = m. (7.7) 

Some explicit applications of the present general scheme 
together with the sum rule will be given explicitly in the 
following. The coefficient of the product A, A, A,, for exam- 
ple, is given by 

,$, ,$, ,$, tjk ‘ii tv = z 2 (7.8) 

for 1 #k and I #n. The coefficient of the product A,A, is 
given by 

,z, (5 > t ,k 2t,, =; 7 (7.9) 

fork #I. 
Next, we study the mth term of (5.1). It is given by 

--$P CA+, + c &k . ( m j= I k=l 

(7.10) 

In particular, the symmetric decomposition of the form 
1,,1.4 e e r,xBetlxA e- e FIIB ,+A.. .e “@eftiA f (7.11) 

with the symmetry condition 
to = t,,t, = t p- , )..., s, = sp,s2 = sp- , ,... . (7.12) 

Then, the third-order decomposition condition is given by 

A$(, th (,zh sJ)2 = 3 
and 

(7.13) 

(7.14) 

with 

,$ ‘J = 
1 and $’ SJ = 1. (7.15) 

J=, 

This also gives the fourth-order decomposition condition 
owing to Theorem 2. 

It is easily seen that the fractal decomposition in Sec. III 
is a special solution of (7.13) and (7.14). Consequently, 
there are many other real solutions in (7.13) and (7.14) 
with (7.15)) as will be seen easily from the consideration on 
the number of equations of decomposition condition and the 
number of parameters. In fact, the former is four (cf. the 
condition on the second order is satisfied automatically 
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owing to the symmetry property and the sum rule), and the 
latter is (p + 1). Thus the relevant parameters {t,,s,) are 
redundant, when p>4. The symmetric decomposition of 
third order for p = 3 (namely, M = 2p + 1 = 7) is unique, 
as is seen from (3.8). This is the reason why the decomposi- 
tion S, (x) in (3.8) could be found first in the present study, 
and why there exists no real symmetric decomposition in the 
form (7.11) with (7.12) forp<2 (namelyforM(5). 

VIII. FRACTAL-TEMPERATURE QUANTUM MONTE 
CARLO METHOD 

The partition function 
Z = Tr exp( - pJj)i( (8.1) 

may be calculated using the fractal decomposition intro- 
duced in the present paper. Now, we put 

;r=2Yo + v. (8.2) 
Then we have 

Z =Tre - B( H ,) + Y) 

= lim [S,*( -B/n)]“, (8.3) 
n-m 

where Sz (x) is given by (3.14) with the fractal numbers 
{p,,) given in (3.16). 
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This new scheme is much better than the ordinary sec- 
ond-order decomposition 

z, = ~~ [ e - (/3/Z%,) a Oe - f8/&rf v - (d/%,) fi O] %, e ( 8.4) 

when the criterion 

(W/n) rm-*41 (8.5) 
is satisfied. This criterion is easily derived from the following 
consideration. The number of products of partial Boltzmann 
factors erp and erB is estimated to be (2.5” - ’ + 1) n for the 
approximant .STm (x) in (3.14). On the other hand, it is giv- 
en by 2n, + 1 for the ordinary symmetric decomposition 
(8.4). For the same number of products, the accuracy of our 
new scheme is seen to be of the order offl 2m + ‘/n”” from the 
formula 

exp[ -bYc;uj, + V,] = [S&C -B/n)]” 

+ 0(/Y z’n + ‘/n2m). (8.61 
The accuracy of the ordinary symmetric decomposition is of 
the order of 

0(fi3/nfj) = O(/?33/(n2~52m-2)). 
Thus our criterion is given by 

(8.7) 

B 2m+ l/n2m4p3/(n2.5*“-2). (8.8) 
This yields (8.5). Therefore, our new scheme is extremely 
efficient when 

P < n/5. (8.9) 
Some explicit applications of the present fractal-tem- 

perature quantum Monte Carlo method will be reported 
elsewhere. 

IX. FRACTAL-TIME MONTE CARLO METHOD 
It is also possible to formulate the following fractal-time 

path integral 

(ale”H’“lb) = ~*~(al[S~~(it/nJi)]“lb) (9.1) 

with Szz (x) in (3.14). This representation of the matrix 
elements of the transition operator e”“” is very convenient 
from a practical point of view. In particular, this may be 
useful in studying nuclear and chemical reactions. 

X. A NEW EFFICIENT METHOD OF QUANTUM MONTE 
CARLO SIMULATION!3-COMBINATlON OF THE 
FRACTAL DECOMPOSITION AND SORELLA’S 
METHOD 

It is quite interesting to combine the present new scheme 
with Sorella’s method. 15-19 We propose here a new idea to 
apply the present fractal scheme to Sorella’s method, name- 
ly, that we make use of the fractal decomposition in con- 
structing Sorella’s orthogonalization scheme. This new idea 
will be applied to two-dimensional frustrated quantum sys- 
tems in order to clarify the mechanism of the high-T, super- 
conductivity. 
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Xl. SUMMARY AND DISCUSSION 

In the present paper, we have formulated a general 
scheme of fractal decomposition of the form ( 1.1) . This has 
a fractal structure in our recursive scheme. It has been prov- 
en that some of the decomposition parameters {tj} should be 
negative (nonexistence theorem of positive decomposition). 
This fact seems to have a very instructive physical meaning. 
That is, the negative time may be interpreted to express 
quantum fluctuation of holes or antiparticles. This new in- 
terpretation will be discussed in more detail elsewhere. 

Hopefully, the present new fractal scheme of higher- 
order decomposition ofexponential operators will be applied 
to many quantum many-body systems in near future. 
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APPENDIX: DERIVATION OF THE MAXIMUM POINT 
(5.15) 

From the expression (5.14) of the functionf( {s,)), we 
have the derivative of it with respect to the variable s2 as 

af -= - 
as2 

(1 +s, +b,12+2c1 - 02 +b2121 

+ (~2 + 26, )’ + 2x2 (sz + 26,) = 0, 
where b, is defined as 

bj=sj+sj+, +.+.-i-s,. 

The solution of (Al ) with respect to s2 is given by 

s, =j(l -b,). 

By combining (A3) with (5.7), we obtain 

s, =s2 =;(I -b,). 

Similarly, we have 

-$= l-26, -36: +4s,(s, +2b,) 
3 

+ (3s, + 2b4)& + 26,) =O. 
Using (A4) and (A5), we obtain 

s, =s, =s3 =i(l -b,). 

Successively, from the maximal condition 

@- 0 -zz , 
&k 

We obtain 

(AlI 

C.42) 

(A3) 

(A4) 

(A51 

(A7) 

s, = s2 = .y3 = * * * =sk = (l/k)(l -b,+,). 

Masuo Suzuki 406 

Downloaded 17 Nov 2004 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Finally, we arrive at the conclusion (5.15). It is also shown 
easily from the above expressions of derivatives {Jf/$> 
that the symmetric point S, = s2 = s3 = . . . = sP = l/p is 
the maximum one of the functionf({s,>) in the first zone 
(s, > 0) of thep-dimensional hyperspace. 
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