Chapter 5

Cycle stability

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

and the ways in which the orbits intertwine— are invariardema general

continuous change of coordinates. Equilibria and periodiits areflow-
invariant sets, in the sense that the flow only shifts points along ag@keriorbit,
but the periodic orbit as the set of periodic points remanchanged in time. Sur-
prisingly, there also exist quantities that depend on th@naf metric distance
between points, but nevertheless do not change value urgtepath change of
coordinates. Local quantities such as the eigenvalues wlitetp and periodic
orbits, and global quantities such as Lyapunov exponengifienentropy, and
fractal dimensions are examples of properties of dynansigslems independent
of coordinate choice.

We now turn to the first, local class of such invariants, liretability of equi-
libria and periodic orbits of flows and maps. This will givemgtric information
about local dynamics, as well as the key concept, the cormfepheighborhood
of a pointx: its size is primarily determined by the number of expandiirgc-
tions, and the rates of expansion along them: contractirecions play only a
secondary role (see sebtf).

If you already know that the eigenvalues of periodic orbitsiavariants of a
flow, skip this chapter.

TOPOLOGICAL FEATURES Of a dynamical system —singularities, periodic orbits,

fast track:
W chapter 7, p. 134
As noted on pagél, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodicentiesless, equilibria and
periodic orbits turn out to be the key to unraveling chaotoamics. Here we

note a few of the properties that make them so precious toogishe

5.1 Equilibria

o _ %\
At the still point, there the dance is. N
—T. S. Eliot, Four Quartets - Burnt Nortonoo:1s:3o]
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For a start, consider the case whegés an equilibrium pointZ.8). Expanding
around the equilibrium pointg, using the fact that the stability matrix = A(Xg)
in (4.2) is constant, and integrating!(x) = Xq + €M(X — Xg) + - - - , we verify that
the simple formula4.15 applies also to the Jacobian matrix of an equilibrium
point,

J =, Iy = J(x), Ag=A(Xg). (5.1)

As an equilibrium point is stationary, time plays no rolegdhe eigenvalues and
the eigenvectors of stability matrik,; evaluated at the equilibrium poing,

Aq D = 1) el (5.2)

describe the linearized neighborhood of the equilibriurmpavith stability ex-
ponentst{ = u{ + 0§ independent of any particular coordinate choice.

e Ifall u) < 0, then the equilibrium is stable, orsink

e If someu!) < 0, and othep) > 0, the equilibrium is hyperbolic, or a
saddle

e Ifall u) > 0, then the equilibrium is repelling, orsmurce
e If someu!) = 0, think again (you have a symmetry or a bifurcation).

The eigenvectors5(2) are also the eigenvectors of the Jacobian matifel)) =
exp([/lg‘)) ell)

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they armepological invariants: a
fixed point remains a fixed point for any choice of coordinatesd similarly a
periodic orbit remains periodic in any representation @& dynamics. Any re-
parametrization of a dynamical system that preservesptdagy has to preserve
topological relations between periodic orbits, such as tleéative inter-windings
and knots. So the mere existence of periodic orbitBcas to partially organize
the spatial layout of a non—wandering set. No less impar@asitwe shall now
show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—wandering set.

We start by noting that due to the multiplicative structute2() of Jacobian
matrices, the Jacobian matrix for thilh repeat of a prime cyclp of periodT is

IT(x) = IT(FIT00) - IT(FT9IT(0) = (), (5.3)

where Jp(X) = JT(x) is the Jacobian matrix for a single traversal of the prime
cycle p, x € Mp is any point on the cycle, antfT(x) = x as f{(X) returns tox
every multiple of the period. Hence, it stfices to restrict our considerations to
the stability of prime cycles.

W fast track:
sect. 5.3, p. 100
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Figure 5.1: For a prime cyclep, Floquet matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirectios) of J,(X) given by the
Floquet multiplier|A;|. These ratios are invariant un-
der smooth nonlinear reparametrizations of state spag
coordinates, and are intrinsic property of cyple

5.2.1 Cycle stability

The time-dependeni-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hencenfrmw on we shall
refer to a Jacobian matrix evaluated on a periodic grigither as adxd] Floquet
matrix J, or a [[d-1) x (d—1)] monodromy matrix M, to its eigenvaluegd\; as
Floquet multipliers(4.7), and to/l(p‘) = p(p‘) + iw(p’) asFloquet exponentsThe
stretchingcontraction rates per unit time are given by the real partBlofuet
exponents

appendix C.2.1

)1
1P = 7 |Api] - (5.4)

The factor YT in the definition of the Floquet exponents is motivated bydts
for the linear dynamical systems, for example3(l). (Parenthetically, a Floquet
exponent is not a Lyapunov exponeitl(1) evaluated on one period the prime
cycle p; read chaptef). When A is real, we do care about!) = Aj/|Aj| €
{+1, -1}, the sign of thejth Floquet multiplier. Ifo)) = —1 and|A|| # 1, the cor-
responding eigen-direction is said to ingerse hyperbolicKeeping track of this
by case-by-case enumeration is an unnecessary nuisamessof our formulas
will be stated in terms of the Floquet multiplieAs rather than in the terms of the
multiplier signso-(), exponents:()) and phases().

In dynamics the expanding directionag| > 1, have to be taken care of first,
while the contracting directiond.| < 1 tend to take care of themselves, hence we
always order multiplierg\i in order of decreasing magnitugle;| > |[Ao| > ... >
IAgl. SincelAj| = 4, this is the same as ordering pP) > 4@ > ... > 4@ We
sort the Floguet multiplier§Ap 1, Appo, ..., Apg} Of the Floquet matrix evaluated
on thep-cycle into three setge, m, ¢}

section 7.3

expanding:  {Ale = {Apj:|Apj|> 1}
We =P 10 >0
marginal:  {Alm = {Apj: |Apj| =1} (5.5)
(W = a0 4 =0)
contracting:  {Ale = {Ap;:|Apj|<1)
We = u <0).

3

In what follows, the volume of expanding manifold will playp amportant role.
We denote byAp (no jth eigenvalue index) the product ekpandingFloquet
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Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory’(t), except those on its center ©
and stable manifolds. X

multipliers
e

As J, is a real matrix, complex eigenvalues always come in comptejugate
pairs,Apj+1 = A?i, so the productH.6) is always real.

A periodic orbit of a continuous-time flow, or of a map, or a fixeoint of a
map is

p. 97

e stablg asinkor alimit cycleif all [Aj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal expofrgerturbations
tangent to the cycle, see se6t3.1, are strictly negative, & u(2 > 4(1).

e hyperbolicor a saddle, unstable to perturbations outside its stabfefoha
if some|Aj| > 1, and otheiAj| < 1 (a set ofu) > umin > 0 is strictly
positive, the rest is strictly negative).

o elliptic, neutralor marginalif all [Aj] = 1 () = 0).

e partially hyperbolic if () = 0 for a subset of exponents (other than the
longitudinal one).

e repelling or asource unstable to any perturbationafl |A;j| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal e&pg are strictly
positive,u) > 4@ > 0).

The region of system parameter values for which a perioditt pris stable is
called thestability windowof p. The set of initial points that are asymptotically
attracted toMp ast — +oo (for a fixed set of system parameter values) is called
the basin of attractionof limit cycle p. Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said taniséable see figures.2

If all Floquet exponents (other than the vanishing longitudirpbaent) ofall
periodic orbits of a flow are strictly bounded away from zdéh® flow is said to
behyperbolic Otherwise the flow is said to benhyperbolic A confined smooth
flow or map is generically nonhyperbolic, with partial eligity or marginality
expected only in presence of continuous symmetries, orifardation param-
eter values. As we shall see in chapl€l in presence of continuous symme-
tries equilibria and periodic orbits are not likely soluts) and their role is played
by higher-dimensional tori, relative equilibria and relat periodic orbits. For

section 7.4
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Hamiltonian flows the symplectic Sg(symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a prolif@nadf elliptic and partially
hyperbolic tori. ection 75
Henriette Roux: In my 61,506-dimensional computation ofeilr-Stokes equi- '
librium | generated about 30 eigenvectors before | wanteddee on. How many
of these eigenvectors are worth generating for a parti@dartion and why?

A: A rule of the thumb is that you need all equilibrium eigelnes/ periodic orbit
Floquet exponents with positive real parts, and at leastetimegative exponents
whose magnitude is less or comparable to the largest expgedienvalue. More
precisely; keep adding the next least contracting eigelsvéd the sum of the
preceding ones as long as the sum is positive (Kaplan-Yaitexion). Then, just
to be conservative, double the number of eigenvalues yqu Rémi do not need to
worry about the remaining (60 thousand!) eigen-directimnsvhich the negative
eigenvalues are of larger magnitude, as they always cantramlinear terms
cannot mix them up in such a way that expansion in some dwecioverwhelms
the strongly contracting ones.

chapter 26

W example 5.1
p. 106

5.3 Floquet multipliers are invariant e .
\

The 1-dimensional map Floguet multiplie€s.21) is a product of derivatives
over all points around the cycle, and is therefore indepeindewhich periodic
point is chosen as the initial one. In higher dimensions tienfof the Floquet
matrix Jo(Xo) in (5.3) does depend on the choice of coordinates and the initial
point Xo € Mp. Nevertheless, as we shall now show, the cytteuet multipliers
are intrinsic property of a cycle in any dimension. Consitterith eigenvalue,
eigenvector pair/j, e) computed fromJ, evaluated at a periodic point

Jp() D) = A D), xeM,. (5.7)

Consider another point on the cycle at tim&ter, X = f!(x) whose Floquet
matrix is Jo(x’). By the semigroup propertyt(20), JT+t = J¥T "and the Jacobian
matrix atx’ can be written either as

IT) = IT(x) I'(x) = Ip(x) I'(¥),

or JY(X) Jp(). Multiplying (5.7) by J'(x), we find that the Floquet matrix evalu-
ated atx’ has the same Floquet multiplier,

Jp(X)eV(x) = A D), eD(x)=I(xeV(x, (5.8)

but with the eigenvectoe!) transported along the flow — x to el)(x) =
Ji(x) e)(x). Hence, in the spirit of the Floquet theory (appen@i.1) one can
define time-periodic eigenvectors (in a co-moving ‘Lagiangrame’)

ety = e eD©),  eD(t) = eD(x(t)), x(t) e M,. (5.9)

Jp evaluated anywhere along the cycle has the same set of Elogulgpliers
{A1, Ao, -+, 1,--- ,Ag-1}. As quantities such as dp(x), detJp(X) depend only
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Figure 5.3: Any two points along a periodic orbit =

p are mapped into themselves after one cycle period ax
T, hence a longitudinal displacemeaft = v(xo)dt is
mapped into itself by the cycle Jacobian matkjx

on the eigenvalues al,(x) and not on the starting point in expressions such as
det(1 - J(x)) we may omit reference t

det(1- Jp) = det(1- Jy(x)) foranyxe Mp. (5.10)

We postpone the proof that the cycle Floquet multipliers sam@oth conjugacy
invariants of the flow to secb.4; time-forward map %.8) is the special case of
this general property of smooth manifolds and their tangpates.

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either ancamis symmetry of the
flow (which one should immediately exploit to simplify theoptem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical

of parameter values for which bifurcations occur) one hagadeyond linear
stability, deal with Jordan type subspaces (see exatfjjeand sub-exponential
growth rates, such a8. For flow-invariant solutions such as periodic orbits, the
time evolution is itself a continuous symmetry, hence aqukci orbit of a flow
always has anarginal Floquet multiplieras we now show.

The Jacobian matrid'(x) transports the velocity field(x) by (4.9), v(x(t)) = exercise 5.1
J'(x0) V(Xo) . In general the velocity at point(t) does not point in the same di- '
rection as the velocity at point, so this is not an eigenvalue condition fd
the Jacobian matrix computed for an arbitrary segment ofrbitrary trajectory
has no invariant meaning. However, if the orbit is perioa(@,,) = x(0), after a
complete period

chapter 24

Jp(X)V(X) = V(X), XeM;. (5.11)

Two successive points on the cycle initially distardee= x'(0) — x(0) apart, are
separated by the exactly same distance after a completeni pe(T) = 65X, see
figure 5.3, hence for a periodic orbit of #ow the velocity fieldv at any point
along cycle is an eigenvectef)(x) = v(x) of the Jacobian matrid, with the unit
Floquet multiplier, zero Floquet exponent

Ap=1, AW =o. (5.12)

The continuous invariance that gives rise to this margiajfet multiplier is €*€rcise 8:3

the invariance of a cycle (the sét,) under a time translation of its points along
the cycle. As we shall see in seét5, this marginal stability direction can be
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eliminated by cutting the cycle by a Poincaré section apthoeng the continuous
flow Floquet matrix by the Floquet matrix of the Poincar@&iratmap.

If the flow is governed by a time-independent Hamiltoniae, ¢énergy is con-
served, and that leads to an additional marginal Floquetiplial (we shall show
in sect.7.4that due to the symplectic invariancé.Z7) real eigenvalues come in
pairs). Further marginal eigenvalues arise in presencergfraious symmetries,
as discussed in chapti®.

5.4 Floquet multipliers are metric invariants

o\.\
In sect.5.3we established that for a given flow, the Floquet multiplemes intrin- Q
sic to a given cycle, independent of the starting point altihregcycle. Now we
prove a much stronger statement: cycle Floquet multipheesmooth conjugacy
or metric invariantsof the flow, the same ianyrepresentation of the dynamical
system. That follows by elementaryfidirential geometry considerations:

If the same dynamics is given by a mé&gn x coordinates, and a mapin
they = h(x) coordinates, therf andg (or any other good representation) are
related by amooth conjugacya reparameterization and a coordinate transforma-
tion g = ho f oh™! which maps nearby points dfinto nearby points of.. As both
f andg are arbitrary representations of the dynamical systemexipécit form
of the conjugacyh is of no interest, only the properties invariant under aangr
formationh are of general import. Furthermore, a good representakionld not
mutilate the data; the mappitgmust be amooth conjugacwhich maps nearby
points of f into nearby points of.

This smoothness guarantees that the cycles are not onlptpgal invariants,
but that their linearized neighborhoods are also metriariants. For a fixed point
f(X) = x of a 1-dimensional map this follows from the chain rule forigives,

GO = W) T s
- h’(x)f’(x)hlix):f’(x). (5.13)

In d dimensions the relationship between the mapsfiiedint coordinate rep-
resentations is agaigo h = ho f. The chain rule now related, the Jacobian
matrix of the maym, to the Jacobian matrix of maip

I (y)ij = T(F O IOIT (5 (5.14)
where
I'(Xik = g_yx:( and Tt = g—;(l'( .

If xis an equilibrium pointx = f(x), I is the matrix inverse of 1, and 6.14)

is asimilarity transformation and thus preserves eigenvalues. It is eaggrify
that in the case of periaa,, cycle Ji,(y) andJp(X) are again related by a similarity
transformation. (Note, though, that this is not true 86¢x) with r # np). As
stability of a flow can always be reduced to stability of a lRai& return map, a
Floguet multiplier of any cycle, for a flow or a map in arbitratimension, is a

metric invariant of the dynamical system. .
exercise B.3
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Theith Floguet (multiplier, eigenvector) pain(, €V) are computed frond
evaluated at a periodic point J(x) eV (x) = A e(X), x € Mp. Multiplying
by I'(x) from the left, and insertind = I'(X)~I'(X), we find that theJ evaluated at
y = h(x) has the same Floquet multiplier,

I ey = A ey, (5.15)

but with the eigenvectoed) (x) mapped tae® (y)’ = I'(x) éD(x).

5.5 Stability of Poincaré map cycles

(R. Paskauskas and P. Cvitanovi ﬁ)
If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.25

Jij = (5ik - (\\?—Lljj)) N (5.16)
with all primes dropped, as the initial and the final pointsicwle, X' = fT(x) = x.

If the periodic orbitp pierces the Poincaré sectiartimes, the same observation
applies to theth iterate ofP.

We have already established ih.Z6) that the velocityv(X) is a zero eigen-
vector of the Poincaré section Floquet matdx; = 0. Consider nextA.,, ),
the full state spaceth (eigenvalue, eigenvector) paf.(), evaluated at a periodic
point on a Poincaré section,

JX)EDX) = A, €(x), xeP. (5.17)

Multiplying (5.16) by € and inserting %.17), we find that the full state space
Floguet matrix and the Poincaré section Floquet matrave the same Floquet
multiplier

J) () = A, 8 (x), xeP, (5.18)

where&® is a projection of the full state space eigenvector onto thimdarée
section:

vi Uk
(v-U)

@ = (o0~ o) @ (5.19)
Hence,jp evaluated on any Poincaré section point along the gytias the same
set of Floquet multiplier$A1, Ao, - - - Ag} as the full state space Floquet matijx
except for the marginal unit Floquet multipli€s.(2.

As established in4.26), due to the continuous symmetry (time invarianri@)
is a rankd—1 matrix. We shall refer to the rankd¢1—N)x (d—1—N)] submatrix
with N-1 continuous symmetries quotiented out asrth@nodromy matrix M
(from Greekmono-= alone, single, andlromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuousrsgitries is discussed
in chapterlO below.



CHAPTER 5. CYCLE STABILITY 104

5.6 There goes the neighborhood

0\.\
In what follows, our task will be to determine the size afeighborhoodof x(t), Q
and that is why we care about the Floguet multipliers, ané&afly the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) tives remain in the
neighborhood of the trajectoy(t) = f!(Xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstabletitires: all chaos arises
from flights along these these directions. The sub-voliig| = []7 Ax of the
set of points which get no further away froff(xo) thanL, the typical size of the
system, is fixed by the condition thak A; = O(L) in each expanding direction
I. Hence the neighborhood size scale$/s,| « O(LdE)/|Ap| o 1/|Apl WhereAp
is the product of expanding Floquet multiplie&s &) only; contracting ones play
a secondary role. Discussion of seti5.], figure 1.9, and figure5.1 illustrate
intersection of initial volume with its return, and chapté? and18 illustrate the
key role that the unstable directions play in systematicadirtitioning the state
space of a given dynamical system. The contracting dinestéve so secondary
that even infinitely many of them (for example, the infinityaointracting eigen-
directions of the spatiotemporally chaotic dynamics dbecr by a PDE will not
matter.

So the dynamically important information is carried by thpanding sub-

volume, not the total volume computed so easily4r2@). That is also the reason
why the dissipative and the Hamiltonian chaotic flows are ilmmore alike than
one would have naively expected for ‘compressihig’ ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding drect Whether the
contracting eigenvalues are inverses of the expanding @mnest is of secondary
importance. As long as the number of unstable directionsitefithe same theory
applies both to the finite-dimensional ODEs and infinite-elisional PDEs.

Résum é

Periodic orbits play a central role in any invariant chaggzation of the dynam-
ics, because (a) their existence and inter-relations @&opa@ogical coordinate-
independent property of the dynamics, and (b) their Flogugtipliers form an
infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remain
invariant under any smooth nonlinear change of coordinatesho f oh™ . Let
us summarize the linearized flow notation used throughauCitaosBook.
Differential formulation, flows: Equations

X=v, 56X = AdX

govern the dynamics in the tangent bundig’k) € T M obtained by adjoining the
d-dimensional tangent spaée € T My to every pointx € M in thed-dimension-

al state spacat c RY. Thestability matrix A= dv/dx describes the instantaneous
rate of shearing of the infinitesimal neighborhoodk(i) by the flow.

Finite time formulation, maps: A discrete sets of trajectory pointsg, X1, - - -,
Xn, -+ -} € M can be generated by composing finite-time maps, either gigen



CHAPTER 5. CYCLE STABILITY 105

xns1 = f(Xy), or obtained by integrating the dynamical equations

1

Xn+1 = f(Xn) = Xn + dT V(X(T)) 5 Atn = tn+1 - tn 5 (520)

tn
for a discrete sequence of timgg ty, - - -, tn, - - -}, Specified by some criterion such
as strobing or Poincaré sections. In the discrete timedtation the dynamics in
the tangent bundlex(6x) € T M is governed by

X1 = F(Xn),  Xns1 = I(Xn) OX%n s J(Xn) = JAtn(Xn) )

whereJ(Xp) = 0Xni1/0%n = de exp (A7) is the 1-time step Jacobian matrix.
Stability of invariant solutions: The linear stability of an equilibrium(xg) = 0
is described by the eigenvalues and eigenvedtdts e} of the stability matrix
A evaluated at the equilibrium point, and the linear stabitift a periodic orbit
fT(X) = X, X € Mp,

D) = A e(x),  Aj=ce”T,

by its Floquet multipliers, vectors and exponefatg, €1}, whered®) = () +jw®.

For every continuous symmetry there is a marginal eigegetion, withA; = 1,

A0 = 0. With all 1+ N continuous symmetries quotiented out (Poincaré sections
for time, slices for continuous symmetries of dynamics,@egpterl0.4.3 linear
stability of a periodic orbit (and, more generally, of a jEly hyperbolic torus)

is described by the §1-N) x (d-1-N)] monodromy matrix, all of whose Floquet
multipliers|A;| # 1 are generically strictly hyperbolic,

Mp(x) €D (x) = Aj €D (x), xe Mp/G.

We shall show in chapterl that extending the linearized stability hyperbolic
eigen-directions into stable and unstable manifolds gi@ttbortant global infor-
mation about the topological organization of state spacbatwkhatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaeteby the product of
expanding Floquet multipliers af,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily thidimension.

F in depth: W fast track:
3 appendix C, p. 822 chapter 9.4, p. 174
Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’.  Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematize used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ iasger on the ear than ‘pseudo-
periodic-orbit.” In Soviet times obscure abbreviationseva rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). /¢ te unstable periodic
orbits simply as ‘periodic orbits’, and the stable ones flinycles’. Lost in the mists of
time is the excitement experienced by the first physicistsoaler that there are periodic
orbits other than the limit cycles reached by mindless caatmn forward in time; but
once one understands that there are at most several stableyicles (SPOs?) as opposed
to the Smale horseshoe infinities of unstable cycles (UPR@&f2)t is gained by prefix 'U’?
A bit like calling all bicycles ‘unstable bicycles’.
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Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent anit
periodic vector fields is a classical subject in the theorgifierential equationsl] 2]. In
physics literature Floquet exponents often assuifieréint names according to the context
where the theory is applied: they are called Bloch phasdwidiscussion of Schrodinger
equation with a periodic potential], or quasi-momenta in the quantum theory of time-
periodic Hamiltonians. Here a discussion of Floquet thésryiven in appendixC.2.1
For further reading on periodic orbits, consult Moehlis &dosic¢ [?] Scholarpedia.org
article.

5.7 Examples

The reader is urged to study the examples collected hereetlimrback to the
main text, click on [click to return] pointer on the margin.

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.42) for stability of the npth
iterate of the map

d np-1
Ao = g F00) = [ ] 0. X =170%0). (5.21)
m=0

Ap is a property of the cycle, not the initial periodic point, as taking any periodic point
in the p cycle as the initial one yields the same Aj.

A critical point x. is a value of x for which the mapping f(X) has vanishing
derivative, f'(x;) = 0. A periodic orbit of a 1-dimensional map is stable if

|Ap| = [F(xnp) ' On,m) -+ £ 0/ (x)| < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Ay of the nth iterate f"(X) evaluated
on a periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by
picking any periodic point as a starting point, running once around a prime cycle, and
multiplying the individual periodic point Jacobian matrices according to (4.22). For
example, the Floquet matrix My for a prime cycle p of length n, of the Hénon map
(3.17) is given by (4.43),

M (x0) = ! -2ax b M
pXO—l_[ 1 K X« € My,

k=n,

and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length np

w=cor[](8 1) 9)

k=n,

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(Xa,)--- M(Xq). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see

exercise 13.10.
click to return: p. 100
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Exercises

5.1. A limit cycle with analytic Floquet exponent. Ermentrout
There are only two examples of nonlinear flows for
which the Floquet multipliers can be evaluated ana5.2. The other example of a limit cycle with analytic Flo-
lytically. Both are cheats. One example is the 2-  quet exponent. What is the other example of a
dimensional flow nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.

g = p+al-o’-p)
p = —q+pl--pd). 5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
Determine all periodic solutions of this flow, and deter- by solving a third example (or more) of a nonlinear flow
mine analytically their Floquet exponents. Hint: go to for which the Floquet multipliers can be evaluated ana-
polar coordinatesy, p) = (r cosd, r sinég). G. Bard lytically.
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